22 research outputs found

    Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis

    Get PDF
    Introduction: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment. Methods: We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease. Results: We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss. Conclusions: Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention

    Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells

    Get PDF
    Multiple myeloma (MM) is characterised by destructive lytic bone disease, caused by induction of bone resorption and impaired bone formation. Our understanding of the molecular mechanisms responsible for osteoblast suppression, are limited. Using the 5T2MM murine model of MM we have previously shown that suppression of the activity of a known inhibitor of bone formation Dikkopf-1 (Dkk1) prevents the development of lytic bone disease. Here we have demonstrated that another potential inhibitor of bone formation, sclerostin domain containing 1 (Sostdc1) is expressed at low levels in MM and osteoblast lineage cells when these cells are grown separately in cell culture but its expression is significantly induced in both cell types when these cells are in contact. The distribution of Sostdc1 staining in bones infiltrated with 5TGM1 myeloma cells in vivo suggested its presence in both myeloma and osteoblast lineage populations when in close proximity. We have also shown that recombinant Sostdc1 inhibits both bone morphogenic proteins (BMP2 and 7) and Wnt signalling in primary osteoblasts and suppresses differentiation of these cells. Together, these findings suggest that Sostdc1 expression in 5TGM1-infiltrated bones as a result of the interaction between myeloma and osteoblast lineage populations, could result in suppression of osteoblast differentiation

    Zoledronic Acid Has Differential Antitumor Activity in the Pre- and Postmenopausal Bone Microenvironment In Vivo

    Get PDF
    Purpose: Clinical trials in early breast cancer have suggested that benefits of adjuvant bone-targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and postmenopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumor cells. Here, we report a differential antitumor effect of zoledronic acid (ZOL) in these two settings. Experimental design: Twleve-week-old female Balb/c-nude mice with disseminated MDA-MB-231 breast tumor cells in bone underwent sham operation or ovariectomy (OVX), mimicking the pre- and postmenopausal bone microenvironment, respectively. To determine the effects of bone-targeted therapy, sham/OVX animals received saline or 100 ΞΌg/kg ZOL weekly. Tumor growth was assessed by in vivo imaging and effects on bone by real-time PCR, micro-CT, histomorphometry, and measurements of bone markers. Disseminated tumor cells were detected by two-photon microscopy. Results: OVX increased bone resorption and induced growth of disseminated tumor cells in bone. Tumors were detected in 83% of animals following OVX (postmenopausal model) compared with 17% following sham operation (premenopausal model). OVX had no effect on tumors outside of bone. OVX-induced tumor growth was completely prevented by ZOL, despite the presence of disseminated tumor cells. ZOL did not affect tumor growth in bone in the sham-operated animals. ZOL increased bone volume in both groups. Conclusions: This is the first demonstration that tumor growth is driven by osteoclast-mediated mechanisms in models that mimic post- but not premenopausal bone, providing a biologic rationale for the differential antitumor effects of ZOL reported in these settings

    Parathyroid Hormone (PTH) Increases Skeletal Tumour Growth and Alters Tumour Distribution in an In Vivo Model of Breast Cancer

    Get PDF
    Breast cancer cells colonize the skeleton by homing to specific niches, but the involvement of osteoblasts in tumour cell seeding, colonization, and progression is unknown. We used an in vivo model to determine how increasing the number of cells of the osteoblast lineage with parathyroid hormone (PTH) modified subsequent skeletal colonization by breast cancer cells. BALB/c nude mice were injected for five consecutive days with PBS (control) or PTH and then injected with DiD-labelled breast cancer cells via the intra-cardiac route. Effects of PTH on the bone microenvironment and tumour cell colonization and growth was analyzed using bioluminescence imaging, two-photon microscopy, and histological analysis. PTH treatment caused a significant, transient increase in osteoblast numbers compared to control, whereas bone volume/structure in the tibia was unaffected. There were no differences in the number of tumour cells seeding to the tibias, or in the number of tumours in the hind legs, between the control and PTH group. However, animals pre-treated with PTH had a significantly higher number of tumour colonies distributed throughout skeletal sites outside the hind limbs. This is the first demonstration that PTH-induced stimulation of osteoblastic cells may result in alternative skeletal sites becoming available for breast cancer cell colonization

    Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo

    Get PDF
    Multiple myeloma (MM) disease progression is dependent on the ability of MM plasma cells (PC) to egress from the bone marrow (BM), enter the circulation and disseminate to distal BM sites. Expression of the chemokine CXCL12 by BM stromal cells is crucial for MM PC retention within the BM. However, the mechanisms which overcome CXCL12-mediated retention to enable dissemination are poorly understood. We have previously identified that treatment with the CCR1 ligand CCL3 inhibits the response to CXCL12 in MM cell lines, suggesting that CCL3/CCR1 signaling may enable egress of MM PC from the BM. Here, we demonstrated that CCR1 expression was an independent prognostic indicator in newly diagnosed MM patients. Furthermore, we showed that CCR1 is a crucial driver of dissemination in vivo, with CCR1 expression in the murine MM cell line 5TGM1 being associated with an increased incidence of bone and splenic disseminated tumors in C57BL/KaLwRij mice. Furthermore, we demonstrated that CCR1 knockout in the human myeloma cell line OPM2 resulted in a >95% reduction in circulating MM PC numbers and BM and splenic tumor dissemination following intratibial injection in NSG mice. Therapeutic targeting of CCR1 with the inhibitor CCX9588 significantly reduced OPM2 or RPMI-8226 dissemination in intratibial xenograft models. Collectively, our findings suggest a novel role for CCR1 as a critical driver of BM egress of MM PC during tumor dissemination. Furthermore, these data suggest that CCR1 may represent a potential therapeutic target for the prevention of MM tumor dissemination.Mara N. Zeissig, Duncan R. Hewett, Vasilios Panagopoulos, Krzysztof M. Mrozik, L. Bik To, Peter I. Croucher, Andrew C.W. Zannettino, and Kate Vandyk

    An Essential Physiological Role for MCT8 in Bone in Male Mice

    Get PDF
    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance

    Metastasis and bone loss: Advancing treatment and prevention

    Get PDF
    Tumor metastasis to the skeleton affects over 400,000 individuals in the United States annually, more than any other site of metastasis, including significant proportions of patients with breast, prostate, lung and other solid tumors. Research on the bone microenvironment and its role in metastasis suggests a complex role in tumor growth. Parallel preclinical and clinical investigations into the role of adjuvant bone-targeted agents in preventing metastasis and avoiding cancer therapy-induced bone loss have recently reported exciting and intriguing results. A multidisciplinary consensus conference convened to review recent progress in basic and clinical research, assess gaps in current knowledge and prioritize recommendations to advance research over the next 5 years. The program addressed three topics: advancing understanding of metastasis prevention in the context of bone pathophysiology; developing therapeutic approaches to prevent metastasis and defining strategies to prevent cancer therapy-induced bone loss. Several priorities were identified: (1) further investigate the effects of bone-targeted therapies on tumor and immune cell interactions within the bone microenvironment; (2) utilize and further develop preclinical models to study combination therapies; (3) conduct clinical studies of bone-targeted therapies with radiation and chemotherapy across a range of solid tumors; (4) develop biomarkers to identify patients most likely to benefit from bone-targeted therapies; (5) educate physicians on bone loss and fracture risk; (6) define optimal endpoints and new measures of efficacy for future clinical trials; and (7) define the optimum type, dose and schedule of adjuvant bone-targeted therapy

    Management of bone metastasis and cancer treatment-induced bone loss during the COVID-19 pandemic : an international perspective and recommendations

    Get PDF
    Optimum management of patients with cancer during the COVID-19 pandemic has proved extremely challenging. Patients, clinicians and hospital authorities have had to balance the risks to patients of attending hospital, many of whom are especially vulnerable, with the risks of delaying or modifying cancer treatment. Those whose care has been significantly impacted include patients suffering from the effects of cancer on bone, where delivering the usual standard of care for bone support has often not been possible and clinicians have been forced to seek alternative options for adequate management. At a virtual meeting of the Cancer and Bone Society in July 2020, an expert group shared experiences and solutions to this challenge, following which a questionnaire was sent internationally to the symposium’s participants, to explore the issues faced and solutions offered. 70 respondents, from 9 countries (majority USA, 39%, followed by UK, 19%) included 50 clinicians, spread across a diverse range of specialties (but with a high proportion, 64%, of medical oncologists) and 20 who classified themselves as non-clinical (solely lab-based). Spread of clinician specialty across tumour types was breast (65%), prostate (27%), followed by renal, myeloma and melanoma. Analysis showed that management of metastatic bone disease in all solid tumour types and myeloma, adjuvant bisphosphonate breast cancer therapy and cancer treatment induced bone loss, was substantially impacted. Respondents reported delays to routine CT scans (58%), standard bone scans (48%) and MRI scans (46%), though emergency scans were less affected. Delays in palliative radiotherapy for bone pain were reported by 31% of respondents with treatments often involving only a single dose without fractionation. Delays to, or cancellation of, prophylactic surgery for bone pain were reported by 35% of respondents. Access to treatments with intravenous bisphosphonates and subcutaneous denosumab was a major problem, mitigated by provision of drug administration at home or in a local clinic, reduced frequency of administration or switching to oral bisphosphonates taken at home. The questionnaire also revealed damaging delays or complete stopping of both clinical and laboratory research. In addition to an analysis of the questionnaire, this paper presents a rationale and recommendations for adaptation of the normal guidelines for protection of bone health during the pandemic

    Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength

    Get PDF
    Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium

    Clodronate-liposome mediated macrophage depletion abrogates multiple myeloma tumor establishment in vivo

    No full text
    Multiple myeloma is a fatal plasma cell malignancy that is reliant on the bone marrow microenvironment. The bone marrow is comprised of numerous cells of mesenchymal and hemopoietic origin. Of these, macrophages have been implicated to play a role in myeloma disease progression, angiogenesis, and drug resistance; however, the role of macrophages in myeloma disease establishment remains unknown. In this study, the antimyeloma efficacy of clodronate-liposome treatment, which globally and transiently depletes macrophages, was evaluated in the well-established C57BL/KaLwRijHsd murine model of myeloma. Our studies show, for the first time, that clodronate-liposome pretreatment abrogates myeloma tumor development in vivo. Clodronate-liposome administration resulted in depletion of CD169+ bone marrow-resident macrophages. Flow cytometric analysis revealed that clodronate-liposome pretreatment impaired myeloma plasma cell homing and retention within the bone marrow 24β€―hours postmyeloma plasma cell inoculation. This was attributed in part to decreased levels of macrophage-derived insulin-like growth factor 1. Moreover, a single dose of clodronate-liposome led to a significant reduction in myeloma tumor burden in KaLwRij mice with established disease. Collectively, these findings support a role for CD169-expressing bone marrow-resident macrophages in myeloma disease establishment and progression and demonstrate the potential of targeting macrophages as a therapy for myeloma patients.Khatora S. Opperman, Kate Vandyke, Kimberley C. Clark, Elizabeth A. Coulter, Duncan R. Hewett, Krzysztof M. Mrozik, Nisha Schwarz, Andreas Evdokiou, Peter I Croucher, Peter J Psaltis, Jacqueline E Noll and Andrew CW Zannettin
    corecore