664 research outputs found

    Tracing a relativistic Milky Way within the RAMOD measurement protocol

    Full text link
    Advancement in astronomical observations and technical instrumentation implies taking into account the general relativistic effects due the gravitational fields encountered by the light while propagating from the star to the observer. Therefore, data exploitation for Gaia-like space astrometric mission (ESA, launch 2013) requires a fully relativistic interpretation of the inverse ray-tracing problem, namely the development of a highly accurate astrometric models in accordance with the geometrical environment affecting light propagation itself and the precepts of the theory of measurement. This could open a new rendition of the stellar distances and proper motions, or even an alternative detection perspective of many subtle relativistic effects suffered by light while it is propagating and subsequently recorded in the physical measurements.Comment: Proceeding for "Relativity and Gravitation, 100 Years after Einstein in Prague" to be published by Edition Open Access, revised versio

    Nonlinear Image Filtering for Materials Classification

    Get PDF

    Micro-arcsecond light bending by Jupiter

    Full text link
    The detectors designed for Gaia, the next ESA space astrometry mission to be launched in 2011, will allow to observe repeatedly stars very close to Jupiter's limb. This will open a unique opportunity to test General Relativity by performing many Eddington-like experiments through the comparison between the pattern of a starfield observed with or without Jupiter. We have derived the main formulas relevant for the monopole and quadrupole light deflection by an oblate planet and developed a simulator to investigate the processing of the Gaia astrometric observation in the vicinity of the planet. The results show that such an experiment carried out with the Gaia data will provide a new fully independent determination of the PPN parameter gamma by means of differential astrometric measurements and, more importantly, for the first time will evidence the bending effect due to the quadrupole moment with a 3-sigma confidence level. Given the accuracy of the experiment for the monopole deflection, this will permit to test alternative modelling of the light bending by moving masses.Comment: 22 pages, 16 figures. submitted to Class. Quantum Gra

    A methodology for physically based rockfall hazard assessment

    Get PDF
    Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria

    Parametric evaluation of 3D dispersion of rockfall trajectories

    No full text
    International audienceThe capability of evaluating and managing rockfall related risks is largely based on numerical modelling. Nevertheless, the reliability and accuracy of rockfall models is greatly affected by the strong uncertainty and spatial variability which characterise all the relevant parameters. In particular, 3D effects related to the variability of slope geometry and micro-topography play a major role in controlling the dynamics of falling blocks. The most important 3D effect is the "lateral dispersion" of rockfall trajectories, largely affecting the way we model rockfall dynamics, design countermeasures and assess rockfall hazard. Nevertheless, the dependence of lateral dispersion on different controlling factors has been hardly ever systematically evaluated. In this paper, the influence of different controlling factors on the dispersion of rockfall trajectories has been systematically evaluated by performing 3D parametric modelling. Numerical simulations have been performed through a new software code able to use both a lumped mass and an hybrid (kinematic-dynamic) approach. Parametric modelling has been performed at different spatial resolutions using sets of biplanar simplified slopes characterised by different mean inclination and roughness. Model results outlined a complex dependence of lateral dispersion phenomena on slope mean gradient (macro-topography), slope roughness (micro-topography) and the spatial resolution of the model (model-dependent topography). Furthermore, the sensitivity of model results in terms of kinematic variables of motion (i.e. velocity and height to the ground) to the factors controlling lateral dispersion has been evaluated, resulting in practical constraints on countermeasure design and hazard assessment

    A general relativistic model for the light propagation in the gravitational field of the Solar System: the dynamical case

    Full text link
    Modern astrometry is based on angular measurements at the micro-arcsecond level. At this accuracy a fully general relativistic treatment of the data reduction is required. This paper concludes a series of articles dedicated to the problem of relativistic light propagation, presenting the final microarcsecond version of a relativistic astrometric model which enable us to trace back the light path to its emitting source throughout the non-stationary gravity field of the moving bodies in the Solar System. The previous model is used as test-bed for numerical comparisons to the present one. Here we also test different versions of the computer code implementing the model at different levels of complexity to start exploring the best trade-off between numerical efficiency and the micro-arcsecond accuracy needed to be reached.Comment: 40 pages, 5 figures. Accepted for publication on The Astrophysical Journal. Manuscript prepared with AASLaTeX macros v.5.

    Classifying structural alterations of the cytoskeleton by spectrum enhancement and descriptor fusion.

    Get PDF
    A classifier capable of ranking structural alterations of the cytoskeleton is developed. Images of cytoskeletal microtubules obtained from the epifluorescence microscopy of primary culture rat hepatocytes are analyzed. Morphological descriptors are extracted by contour and mass fractal analysis, direct methods, and spectrum enhancement. All methods are designed and tuned to make the extracted morphological descriptors insensitive to absolute fluorescence intensities. Spectrum enhancement is a nonlinear filter that involves spatial differentiation of the gray-scale image followed by conversion of power spectral density to the logarithmic scale and averaging over arcs in the reciprocal domain. Enhanced spectra exhibit local maxima that correspond to the structured microtubule bundles of a normal cytoskeleton. Descriptor fusion for classification is achieved by means of multivariate analysis. The classifier is trained by image sets representing normal ("negative control") microtubules and those altered by exposure to a fungicide at the highest dose of the experiment design. Some sensitivity and validation tests, including discriminant functions analysis, are applied to the classifier. The latter is applied to recognize images of microtubules not used in the training stage and comes from treatments at lower concentrations and shorter times. As a result, structural alterations are ranked and structural recovery after treatment is quantified. The method has potential use in quantitative, morphology-based tests on the cytoskeleton treated either by anticancer drugs or by cytotoxic agents

    A mass-market Galileo receiver: Its algorithms and performance

    Get PDF
    The two main GNSS receiver market segments, professional high-precision receivers and mass market/consumer receivers, have very different structure, objectives, features, architecture, and cost. The code-delay estimation is performed in the software receiver by a parallel correlation unit, giving as output a multi-correlation with certain chip spacing. This approach presents some advantages, mostly the fact that the number of correlation values that can be provided is thousands of times greater, compared to a standard receiver channel. Use of multiple correlators increases multipath-rejection capabilities, essential features in mass-market receivers, especially for positioning in urban scenarios. The TTFF was estimated with about 50 tests, in hot, warm, and cold start, first using both GPS and Galileo satellites, and then using only one constellation. In the second case only the 2D fix is considered, since, according to the scenario described, at maximum three satellites are in view

    Numerical analysis of deep-seated mass movements in the Magura Nappe; Flysch Belt of the Western Carpathians (Czech Republic)

    Get PDF
    Deep-seated slope failures are common features in the mountains of the Raca Unit, Magura Nappe of the Flysch Belt of Western Carpathians. Since they represent very complicated system, understanding of their evolution and triggers still remains unclear. We tried to provide a back-analysis of their development by using a finite difference code (FDM) of continua (Flac 4.0). We confirmed that such large mass movements could be triggered by water saturation of the bedrock in the three particular geological and geomorphic settings. Such situation could have been caused by heavy rainfalls in humid phases of the Holocene or permafrost melting in Late Glacial. The effects of faulting, very deep weathering of the bedrock, low geotechnical parameters of smectite-rich material and the local slope geometry have also been accounted for in numerical models, as well as the other triggering factors of slope instability. FDM modelled shear zones are in agreement with observations
    • …
    corecore