28 research outputs found

    Is the Kaiser Permanente model superior in terms of clinical integration?: a comparative study of Kaiser Permanente, Northern California and the Danish healthcare system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integration of medical care across clinicians and settings could enhance the quality of care for patients. To date, there is limited data on the levels of integration in practice. Our objective was to compare primary care clinicians' perceptions of clinical integration and three sub-aspects in two healthcare systems: Kaiser Permanente, Northern California (KPNC) and the Danish healthcare system (DHS). Further, we examined the associations between specific organizational factors and clinical integration within each system.</p> <p>Methods</p> <p>Comparable questionnaires were sent to a random sample of primary care clinicians in KPNC (n = 1103) and general practitioners in DHS (n = 700). Data were analysed using multiple logistic regression models.</p> <p>Results</p> <p>More clinicians in KPNC perceived to be part of a clinical integrated environment than did general practitioners in the DHS (OR = 3.06, 95% CI: 2.28, 4.12). Further, more KPNC clinicians reported timeliness of information transfer (OR = 2.25, 95% CI: 1.62, 3.13), agreement on roles and responsibilities (OR = 1.79, 95% CI: 1.30, 2.47) and established coordination mechanisms in place to ensure effective handoffs (OR = 6.80, 95% CI: 4.60, 10.06). None of the considered organizational factors in the sub-country analysis explained a substantial proportion of the variation in clinical integration.</p> <p>Conclusions</p> <p>More primary care clinicians in KPNC reported clinical integration than did general practitioners in the DHS. Focused measures of clinical integration are needed to develop the field of clinical integration and to create the scientific foundation to guide managers searching for evidence based approaches.</p

    Reconstruction of the Core and Extended Regulons of Global Transcription Factors

    Get PDF
    The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks
    corecore