40 research outputs found

    STrain Analysis and Mapping of the Plantar Surface (STAMPS): A novel technique of plantar load analysis during gait

    Get PDF
    Diabetic foot ulceration is driven by peripheral neuropathy, resulting in abnormal foot biomechanics and elevated plantar load. Plantar load comprises normal pressure and tangential shear stress. Currently, there are no in-shoe devices measuring both components of plantar load. The STAMPS (STrain Analysis and Mapping of the Plantar Surface) system was developed to address this and utilises digital image correlation (DIC) to determine the strain sustained by a plastically deformable insole, providing an assessment of plantar load at the foot-surface interface during gait. STAMPS was developed as a multi-layered insole, comprising a deformable mid-layer, onto which a stochastic speckle pattern film is applied. A custom-built imaging platform is used to obtain high resolution pre- and post-walking images. Images are imported into commercially available DIC software (GOM Correlate, 2020) to obtain pointwise strain data. The strain and displacement data are exported and post-processed with custom analysis routines (MATLAB, Mathworks Inc.), to obtain the resultant global and regional peak strain (SMAG), antero-posterior strain (SAP) and medio-lateral strain (SML). To validate the core technique an experimental test process used a Universal Mechanical Tester (UMT) system (UMT TriboLab, Bruker) to apply controlled vertical and tangential load regimes to the proposed multi-layer insole. A pilot study was then conducted to assess the efficacy of using the STAMPS system to measure in-shoe plantar strain in three healthy participants. Each participant walked 10 steps on the STAMPS insole using a standardised shoe. They also walked 10 m in the same shoe using a plantar pressure measurement insole (Novel Pedar®) to record peak plantar pressure (PPP) as a gold-standard comparator. The results of the experimental validation tests show that with increased normal force, at a constant shear distance, SMAG increased in a linear fashion. Furthermore, they showed that with increased shear distance, at a constant force, SMAG increased. The results of the pilot study found participant 1 demonstrated greatest SMAG in the region toes 3–5 (15.31%). The highest mean SMAG for participant 2 was at the hallux (29.31%). Participant 3 exhibited highest strain in the regions of the first and second metatarsal heads (58.85% and 41.62% respectively). Increased PPP was strongly associated with increased SMAG with a Spearman’s correlation coefficient 0.673 (p < 0.0001). This study has demonstrated the efficacy of a novel method to assess plantar load across the plantar surface of the foot. Experimental testing validated the sensitivity of the method to both normal pressure and tangential shear stress. This technique was successfully incorporated into the STAMPS insole to reliably measure and quantify the cumulative degree of strain sustained by a plastically deformable insole during a period of gait, which can be used to infer plantar loading patterns. Future work will explore how these measures relate to different pathologies, such as regions at risk of diabetic foot ulceration

    Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers

    Get PDF
    Solution self-assembly of block copolymers into inverse bicontinuous cubic mesophases is a promising new approach for creating porous polymer films and monoliths with highly organized bicontinuous mesoporous networks. Here we report the direct self-assembly of block copolymers with branched hydrophilic blocks into large monoliths consisting of the inverse bicontinuous cubic structures of the block copolymer bilayer. We suggest a facile and scalable method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large-pore (&gt;25nm diameter) networks weaved in crystalline lattices. The surface functional groups of the internal large-pore networks are freely accessible for large guest molecules such as protein complexes of which the molecular weight exceeded 100kDa. The internal double-diamond (Pn3m) networks of large pores within the mesoporous monoliths could be replicated to self-supporting three-dimensional skeletal structures of crystalline titania and mesoporous silica.open2

    A plantar surface shear strain methodology utilising Digital Image Correlation

    Get PDF
    The increase in the global diabetic population is leading to an increase in associated complications such as diabetic foot ulceration (DFU), associated amputations, morbidity, which substantial treatment costs. Early identification of DFU risk is therefore of great benefit. International guidelines recommend off-loading is the most important intervention for healing and prevention of DFU, with current research focused on pressure measurement techniques. The contribution of strain to DFU formation is not well understood due to challenges in measurement. The limited data available in the literature suggest that plantar strain is involved in ulcer formation. As a consequence, there is a need for plantar strain measurement systems to advance understanding and inform clinical treatment. A method was developed to determine plantar strain based on a Digital Image Correlation (DIC) approach. A speckle pattern is applied to the plantar aspect of the foot using a low ink transference method. A raised walkway with transparent panels is combined with a calibrated camera to capture images of the plantar aspect throughout a single stance phase. Plantar strain is then determined using 2D DIC and custom analysis summarises these data into clinically relevant metrics. A feasibility study involving six healthy participants was used to assess the efficacy of this new technique. The feasibility study successfully captured plantar surface strain characteristics continuously throughout the stance phase for all participants. Peak mean and averaged mean strains varied in location between participants when mapped into anatomical regions of plantar interest, ranging from the calcaneus to the metatarsal heads and hallux. This method provides the ability to measure plantar skin strain for use in both research and clinical environments. It has the potential to inform improved understanding of the role of strain in DFU formation. Further studies using this technique can support these ambitions and help differentiate between healthy and abnormal plantar strain regimes

    Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis

    No full text
    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching
    corecore