518 research outputs found

    The development and use of spoilers as vortex attenuators

    Get PDF
    Results are presented of groundbased and flight investigations performed to develop spoilers as trailing vortex alleviation devices. Based on the results obtained in these investigations, it was found that the induced rolling moment on a trailing model can be reduced by spoilers located near the midsemispan of a vortex generating wing. Substantial reductions in induced rolling moment occur when the spoiler vortex attenuator is located well forward on both unswept and swept wing models. In addition, it was found that existing flight spoilers on the jumbo-jet transport aircraft can be effective as trailing vortex attenuators

    Low-speed wind-tunnel investigation of flight spoilers as trailing-vortex-alleviation devices on a medium range wide-body tri-jet airplane model

    Get PDF
    An investigation was made in the V/STOL tunnel to determine, by the trailing wing sensor technique, the effectiveness of various segments of the existing flight spoilers on a medium range wide body tri-jet transport airplane model when they were deflected as trailing vortex alleviation devices. The four combinations of flight spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 15 to 60 percent at distances behind the transport model of from 3.9 to 19.6 transport wing spans, 19.6 spans being the downstream limit of distances used. Essentially all of the reduction in induced rolling moment on the trailing wing model was realized at a spoiler deflection of about 45 deg

    Effects of a military cargo pod and tail fins on the aerodynamic characteristics of a large wide-body transport model

    Get PDF
    Wind tunnel tests were conducted on a 0.03 scale model of a large wide-body commercial aircraft to determine the effects on the static aerodynamic characteristics resulting from the attachment of a belly pod for the long-range deployment of outsize military equipment. The effectiveness of horizontal-tip fins in augmenting directional stability was investigated. At a test Reynolds number of 1.08 x 1,000,000, the addition of the pod results in an increase in total drag of approximately 20 percent. Trim drag due to the pod is very small. Although the pod produces a significant decrease in directional stability, the addition of the tip fins restores some of the stability, particularly at the lower angles of attack

    Low-speed wind-tunnel investigation of wing fins as trailing-vortex-alleviation devices on a transport airplane model

    Get PDF
    The trailing-vortex-alleviation effectiveness of both a one- and a two-fin configuration (semicircular with a radius of 0.043 semispan) on a jumbo-jet transport airplane model in its landing configuration was investigated in the Langley V/STOL tunnel, by the trailing-wing sensor technique. The fins were located on the upper surface of the transport model wing along the 30-percent-chord line. The fin configurations were effective in reducing the vortex-induced rolling moment, by amounts varying from 28 to 60 percent, on the trailing wing model located at a distance of 7.8 transport model wing spans downstream of the transport model. The flow over the fins and over the transport airplane model wing downstream of the fins was observed to be separated and turbulent. All fin configurations caused a reduction in maximum lift coefficient, a positive increment in drag coefficient, and an increment in nose-up pitching-moment coefficient on the transport airplane model

    Low speed wind tunnel investigation of span load alteration, forward-located spoilers, and splines as trailing-vortex-hazard alleviation devices on a transport aircraft model

    Get PDF
    The effectiveness of a forward-located spoiler, a spline, and span load alteration due to a flap configuration change as trailing-vortex-hazard alleviation methods was investigated. For the transport aircraft model in the normal approach configuration, the results indicate that either a forward-located spoiler or a spline is effective in reducing the trailing-vortex hazard. The results also indicate that large changes in span loading, due to retraction of the outboard flap, may be an effective method of reducing the trailing-vortex hazard

    Wake vortex technology

    Get PDF
    A brief overview of the highlights of NASA's wake vortex minimization program is presented. The significant results of this program are summarized as follows: (1) it is technically feasible to reduce significantly the rolling upset created on a trailing aircraft; (2) the basic principles or methods by which reduction in the vortex strength can be achieved have been identified; and (3) an analytical capability for investigating aircraft vortex wakes has been developed

    Low-speed wind-tunnel parametric investigation of flight spoilers as trailing-vortex-alleviation devices on a transport aircraft model

    Get PDF
    The trailing-wing sensor technique was used in the Langley V/STOL tunnel to determine the effectiveness of 11 combinations of the existing flight-spoiler segments on a jumbo-jet transport aircraft model when they were deflected as trailing-vortex-alleviation devices. All 11 of the flight-spoiler configurations investigated were effective in reducing the induced rolling moment on the trailing model. This investigation is an extension of earlier wind-tunnel and flight tests which showed that the existing flight spoilers on the jumbo-jet aircraft can be used as effective trailing-vortex-alleviation devices. Essentially, all of the reduction in induced rolling moment on the trailing-wing model was realized at a spoiler deflection of 45 deg for single-spoiler configurations, 30 for two-spoiler configurations, and 15 deg for both the three- and four-spoiler configurations. Of the 11 flight-spoiler configurations investigated, the most promising configuration for trailing-vortex abatement on the jumbo-jet aircraft appears to be the three inboard flight spoilers deflected 15 deg

    Low speed wind tunnel investigation of flight spoilers as trailing-vortex-alleviation devices on an extended-range wide body tri-jet airplane model

    Get PDF
    An investigation was made in the Langley V/STOL tunnel to determine, by the trailing wing sensor technique, the effectiveness of various segments of the existing flight spoilers on an extended-range wide-body tri-jet transport airplane model when they were deflected as trailing-vortex-alleviation devices. On the transport model with the approach flap configuration, the four combinations of flight-spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 25 to 45 percent at downstream distances behind the transport model of 9.2 and 18.4 transport wing spans. On the transport airplane model with the landing flap configuration, the four combinations of flight-spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 35 to 60 percent at distances behind the transport model of from 3.7 to 18.4 transport wing spans, 18.4 spans being the downstream limit of distances used

    On the spectroastrometric separation of binary point-source fluxes

    Full text link
    Spectroastrometry is a technique which has the potential to resolve flux distributions on scales of milliarcseconds. In this study, we examine the application of spectroastrometry to binary point sources which are spatially unresolved due to the observational point spread function convolution. The technique uses measurements with sub-pixel accuracy of the position centroid of high signal-to-noise long-slit spectrum observations. With the objects in the binary contributing fractionally more or less at different wavelengths (particularly across spectral lines), the variation of the position centroid with wavelength provides some information on the spatial distribution of the flux. We examine the width of the flux distribution in the spatial direction, and present its relation to the ratio of the fluxes of the two components of the binary. Measurement of three observables (total flux, position centroid and flux distribution width) at each wavelength allows a unique separation of the total flux into its component parts even though the angular separation of the binary is smaller than the observations' point-spread function. This is because we have three relevant observables for three unknowns (the two fluxes, and the angular separation of the binary), which therefore generates a closed problem. This is a wholly different technique than conventional deconvolution methods, which produce information on angular sizes of the sampling scale. Spectroastrometry can produce information on smaller scales than conventional deconvolution, and is successful in separating fluxes in a binary object with a separation of less than one pixel. We present an analysis of the errors involved in making binary object spectroastrometric measurements and the separation method, and highlight necessary observing methodology.Comment: 11 pages, 8 figures, accepted for publication in Astronomy and Astrophysic
    corecore