3,005 research outputs found

    Measuring thermodynamic length

    Get PDF
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    Posterior probability and fluctuation theorem in stochastic processes

    Full text link
    A generalization of fluctuation theorems in stochastic processes is proposed. The new theorem is written in terms of posterior probabilities, which are introduced via the Bayes theorem. In usual fluctuation theorems, a forward path and its time reversal play an important role, so that a microscopically reversible condition is essential. In contrast, the microscopically reversible condition is not necessary in the new theorem. It is shown that the new theorem adequately recovers various theorems and relations previously known, such as the Gallavotti-Cohen-type fluctuation theorem, the Jarzynski equality, and the Hatano-Sasa relation, when adequate assumptions are employed.Comment: 4 page

    Microscopic reversibility of quantum open systems

    Full text link
    The transition probability for time-dependent unitary evolution is invariant under the reversal of protocols just as in the classical Liouvillian dynamics. In this article, we generalize the expression of microscopic reversibility to externally perturbed large quantum open systems. The time-dependent external perturbation acts on the subsystem during a transient duration, and subsequently the perturbation is switched off so that the total system would thermalize. We concern with the transition probability for the subsystem between the initial and final eigenstates of the subsystem. In the course of time evolution, the energy is irreversibly exchanged between the subsystem and reservoir. The time reversed probability is given by the reversal of the protocol and the initial ensemble. Microscopic reversibility equates the time forward and reversed probabilities, and therefore appears as a thermodynamic symmetry for open quantum systems.Comment: numerical demonstration is correcte

    Near-equilibrium measurements of nonequilibrium free energy

    Full text link
    A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a non-equilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.Comment: 5 pages, 3 figure

    Relic Neutrinos and Z-Resonance Mechanism for Highest-Energy Cosmic Rays

    Get PDF
    The origin of the highest-energy cosmic rays remains elusive. The decay of a superheavy particle (X) into an ultra-energetic neutrino which scatters from a relic (anti-)neutrino at the Z-resonance has attractive features. Given the necessary X mass of 1014∼1510^{14\sim15} GeV, the required lifetime, 1015∼1610^{15\sim16} y, renders model-building a serious challenge but three logical possibilities are considered: (i) X is a Higgs scalar in SU(15) belonging to high-rank representation, leading to {\it power}-enhanced lifetime; (ii) a global X quantum number has {\it exponentially}-suppressed symmetry-breaking by instantons; and (iii) with additional space dimension(s) localisation of X within the real-world brane leads to {\it gaussian} decay suppression, the most efficient of the suppression mechanisms considered.Comment: 10 page LaTeX and one postscript figure. References adde

    Microscopic analysis of the microscopic reversibility in quantum systems

    Full text link
    We investigate the robustness of the microscopic reversibility in open quantum systems which is discussed by Monnai [arXiv:1106.1982 (2011)]. We derive an exact relation between the forward transition probability and the reversed transition probability in the case of a general measurement basis. We show that the microscopic reversibility acquires some corrections in general and discuss the physical meaning of the corrections. Under certain processes, some of the correction terms vanish and we numerically confirmed that the remaining correction term becomes negligible; the microscopic reversibility almost holds even when the local system cannot be regarded as macroscopic.Comment: 12 pages, 10 figure

    The length of time's arrow

    Get PDF
    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergence between trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments

    Use of Parthenolide Derivatives as Antileukemic and Cytotoxic Agents

    Get PDF
    To read this abstract, please download this patent

    Use of Parthenolide Derivatives as Antileukemic and Cytotoxic Agents

    Get PDF
    To view this abstract, please download this patent

    Use of Parthenolide Derivatives as Antileukemic and Cytotoxic Agents

    Get PDF
    To read this abstract, please download this patent
    • …
    corecore