1,311 research outputs found
On the Quantum Jarzynski Identity
In this note, we will discuss how to compactly express and prove the
Jarzynski identity for an open quantum system with dissipative dynamics. We
will avoid explicitly measuring the work directly, which is tantamount to
continuously monitoring the system, and instead measure the heat flow from the
environment. We represent the measurement of heat flow with Hermitian map
superoperators that act on the system density matrix. Hermitian maps provide a
convenient and compact representation of sequential measurement and correlation
functions.Comment: 4 page
Multi-core job submission and grid resource scheduling for ATLAS AthenaMP
AthenaMP is the multi-core implementation of the ATLAS software framework and allows the efficient sharing of memory pages between multiple threads of execution. This has now been validated for production and delivers a significant reduction on the overall application memory footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the LHC Computing Grid it must be determined how the computing resources available to ATLAS can best exploit the notable improvements delivered by switching to this multi-process model. A study into the effectiveness and scalability of AthenaMP in a production environment will be presented. Best practices for configuring the main LRMS implementations currently used by grid sites will be identified in the context of multi-core scheduling optimisation
Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors
The displacement noise in the test mass mirrors of interferometric
gravitational wave detectors is proportional to their elastic dissipation at
the observation frequencies. In this paper, we analyze one fundamental source
of dissipation in thin coatings, thermoelastic damping associated with the
dissimilar thermal and elastic properties of the film and the substrate. We
obtain expressions for the thermoelastic dissipation factor necessary to
interpret resonant loss measurements, and for the spectral density of
displacement noise imposed on a Gaussian beam reflected from the face of a
coated mass. The predicted size of these effects is large enough to affect the
interpretation of loss measurements, and to influence design choices in
advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX
CodonLogo: a sequence logo-based viewer for codon patterns
Motivation: Conserved patterns across a multiple sequence alignment can be visualized by generating sequence logos. Sequence logos show each column in the alignment as stacks of symbol(s) where the height of a stack is proportional to its informational content, whereas the height of each symbol within the stack is proportional to its frequency in the column. Sequence logos use symbols of either nucleotide or amino acid alphabets. However, certain regulatory signals in messenger RNA (mRNA) act as combinations of codons. Yet no tool is available for visualization of conserved codon patterns
Measurements of a low temperature mechanical dissipation peak in a single layer of Ta2O5 doped with TiO2
Thermal noise arising from mechanical dissipation in oxide coatings is a
major limitation to many precision measurement systems, including optical
frequency standards, high resolution optical spectroscopy and interferometric
gravity wave detectors. Presented here are measurements of dissipation as a
function of temperature between 7 K and 290 K in ion-beam sputtered Ta2O5 doped
with TiO2, showing a loss peak at 20 K. Analysis of the peak provides the first
evidence of the source of dissipation in doped Ta2O5 coatings, leading to
possibilities for the reduction of thermal noise effects
Fluctuation theorem for currents in open quantum systems
A quantum-mechanical framework is set up to describe the full counting
statistics of particles flowing between reservoirs in an open system under
time-dependent driving. A symmetry relation is obtained which is the
consequence of microreversibility for the probability of the nonequilibrium
work and the transfer of particles and energy between the reservoirs. In some
appropriate long-time limit, the symmetry relation leads to a steady-state
quantum fluctuation theorem for the currents between the reservoirs. On this
basis, relationships are deduced which extend the Onsager-Casimir reciprocity
relations to the nonlinear response coefficients.Comment: 19 page
Random planar graphs and the London street network
In this paper we analyse the street network of London both in its primary and
dual representation. To understand its properties, we consider three idealised
models based on a grid, a static random planar graph and a growing random
planar graph. Comparing the models and the street network, we find that the
streets of London form a self-organising system whose growth is characterised
by a strict interaction between the metrical and informational space. In
particular, a principle of least effort appears to create a balance between the
physical and the mental effort required to navigate the city
Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings
We report on thermal noise from the internal friction of dielectric coatings
made from alternating layers of Ta2O5 and SiO2 deposited on fused silica
substrates. We present calculations of the thermal noise in gravitational wave
interferometers due to optical coatings, when the material properties of the
coating are different from those of the substrate and the mechanical loss angle
in the coating is anisotropic. The loss angle in the coatings for strains
parallel to the substrate surface was determined from ringdown experiments. We
measured the mechanical quality factor of three fused silica samples with
coatings deposited on them. The loss angle of the coating material for strains
parallel to the coated surface was found to be (4.2 +- 0.3)*10^(-4) for
coatings deposited on commercially polished slides and (1.0 +- 0.3)*10^{-4} for
a coating deposited on a superpolished disk. Using these numbers, we estimate
the effect of coatings on thermal noise in the initial LIGO and advanced LIGO
interferometers. We also find that the corresponding prediction for thermal
noise in the 40 m LIGO prototype at Caltech is consistent with the noise data.
These results are complemented by results for a different type of coating,
presented in a companion paper.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to
Phys. Lett.
- âŠ