2,612 research outputs found

    On the Quantum Jarzynski Identity

    Get PDF
    In this note, we will discuss how to compactly express and prove the Jarzynski identity for an open quantum system with dissipative dynamics. We will avoid explicitly measuring the work directly, which is tantamount to continuously monitoring the system, and instead measure the heat flow from the environment. We represent the measurement of heat flow with Hermitian map superoperators that act on the system density matrix. Hermitian maps provide a convenient and compact representation of sequential measurement and correlation functions.Comment: 4 page

    Water-resource records of Brevard County, Florida

    Get PDF
    The U. S. Geological Survey made a comprehensive investigation of the water resources of Brevard County from 1954 to 1958. The purposes of this investigation were: (1) to determine the occurrence and chemical quality of water in the streams and lakes, (2) to determine the location and the thickness of aquifers, and (3) to determine the occurrence and chemical quality of the ground water. During the period from 1933 to 1954, water records were collected from a few stream-gaging stations and a few observation wells. The purpose of this report is to present basic data collected during these investigations. (Document has 188 pages.

    Quantum Operation Time Reversal

    Full text link
    The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page

    Microscopic reversibility of quantum open systems

    Full text link
    The transition probability for time-dependent unitary evolution is invariant under the reversal of protocols just as in the classical Liouvillian dynamics. In this article, we generalize the expression of microscopic reversibility to externally perturbed large quantum open systems. The time-dependent external perturbation acts on the subsystem during a transient duration, and subsequently the perturbation is switched off so that the total system would thermalize. We concern with the transition probability for the subsystem between the initial and final eigenstates of the subsystem. In the course of time evolution, the energy is irreversibly exchanged between the subsystem and reservoir. The time reversed probability is given by the reversal of the protocol and the initial ensemble. Microscopic reversibility equates the time forward and reversed probabilities, and therefore appears as a thermodynamic symmetry for open quantum systems.Comment: numerical demonstration is correcte

    Near-equilibrium measurements of nonequilibrium free energy

    Full text link
    A central endeavor of thermodynamics is the measurement of free energy changes. Regrettably, although we can measure the free energy of a system in thermodynamic equilibrium, typically all we can say about the free energy of a non-equilibrium ensemble is that it is larger than that of the same system at equilibrium. Herein, we derive a formally exact expression for the probability distribution of a driven system, which involves path ensemble averages of the work over trajectories of the time-reversed system. From this we find a simple near-equilibrium approximation for the free energy in terms of an excess mean time-reversed work, which can be experimentally measured on real systems. With analysis and computer simulation, we demonstrate the accuracy of our approximations for several simple models.Comment: 5 pages, 3 figure

    Posterior probability and fluctuation theorem in stochastic processes

    Full text link
    A generalization of fluctuation theorems in stochastic processes is proposed. The new theorem is written in terms of posterior probabilities, which are introduced via the Bayes theorem. In usual fluctuation theorems, a forward path and its time reversal play an important role, so that a microscopically reversible condition is essential. In contrast, the microscopically reversible condition is not necessary in the new theorem. It is shown that the new theorem adequately recovers various theorems and relations previously known, such as the Gallavotti-Cohen-type fluctuation theorem, the Jarzynski equality, and the Hatano-Sasa relation, when adequate assumptions are employed.Comment: 4 page

    Fluctuation Theorem in Rachet System

    Full text link
    Fluctuation Theorem(FT) has been studied as far from equilibrium theorem, which relates the symmetry of entropy production. To investigate the application of this theorem, especially to biological physics, we consider the FT for tilted rachet system. Under, natural assumption, FT for steady state is derived.Comment: 6 pages, 2 figure

    Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation

    Full text link
    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems

    Transient fluctuation theorem in closed quantum systems

    Full text link
    Our point of departure are the unitary dynamics of closed quantum systems as generated from the Schr\"odinger equation. We focus on a class of quantum models that typically exhibit roughly exponential relaxation of some observable within this framework. Furthermore, we focus on pure state evolutions. An entropy in accord with Jaynes principle is defined on the basis of the quantum expectation value of the above observable. It is demonstrated that the resulting deterministic entropy dynamics are in a sense in accord with a transient fluctuation theorem. Moreover, we demonstrate that the dynamics of the expectation value are describable in terms of an Ornstein-Uhlenbeck process. These findings are demonstrated numerically and supported by analytical considerations based on quantum typicality.Comment: 5 pages, 6 figure

    The length of time's arrow

    Full text link
    An unresolved problem in physics is how the thermodynamic arrow of time arises from an underlying time reversible dynamics. We contribute to this issue by developing a measure of time-symmetry breaking, and by using the work fluctuation relations, we determine the time asymmetry of recent single molecule RNA unfolding experiments. We define time asymmetry as the Jensen-Shannon divergence between trajectory probability distributions of an experiment and its time-reversed conjugate. Among other interesting properties, the length of time's arrow bounds the average dissipation and determines the difficulty of accurately estimating free energy differences in nonequilibrium experiments
    • …
    corecore