2,131 research outputs found

    Stability of travelling-wave solutions for reaction-diffusion-convection systems

    Full text link
    We are concerned with the asymptotic behaviour of classical solutions of systems of the form u_t = Au_xx + f(u, u_x), x in R, t>0, u(x,t) a vector in RN, with u(x,0)= U(x), where A is a positive-definite diagonal matrix and f is a 'bistable' nonlinearity satisfying conditions which guarantee the existence of a comparison principle. Suppose that there is a travelling-front solution w with velocity c, that connects two stable equilibria of f. We show that if U is bounded, uniformly continuously differentiable and such that w(x) - U(x) is small when the modulus of x is large, then there exists y in R such that u(., t) converges to w(.+y-ct) in the C1 norm at an exponential rate as t tends to infinity. Our approach extends an idea developed by Roquejoffre, Terman and Volpert in the convectionless case, where f is independent of u_x.Comment: 23 pages. To appear in Topological Methods in Nonlinear Analysi

    Temperature-extended Jarzynski relation: Application to the numerical calculation of the surface tension

    Full text link
    We consider a generalization of the Jarzynski relation to the case where the system interacts with a bath for which the temperature is not kept constant but can vary during the transformation. We suggest to use this relation as a replacement to the thermodynamic perturbation method or the Bennett method for the estimation of the order-order surface tension by Monte Carlo simulations. To demonstrate the feasibility of the method, we present some numerical data for the 3D Ising model

    Measuring thermodynamic length

    Get PDF
    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information and Rao's entropy differential metric. Therefore, thermodynamic length is of central interest in understanding matter out-of-equilibrium. In this paper, we will consider how to define thermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.Comment: 4 pages; Typos correcte

    Non-equilibrium Relations for Spin Glasses with Gauge Symmetry

    Full text link
    We study the applications of non-equilibrium relations such as the Jarzynski equality and fluctuation theorem to spin glasses with gauge symmetry. It is shown that the exponentiated free-energy difference appearing in the Jarzynski equality reduces to a simple analytic function written explicitly in terms of the initial and final temperatures if the temperature satisfies a certain condition related to gauge symmetry. This result is used to derive a lower bound on the work done during the non-equilibrium process of temperature change. We also prove identities relating equilibrium and non-equilibrium quantities. These identities suggest a method to evaluate equilibrium quantities from non-equilibrium computations, which may be useful to avoid the problem of slow relaxation in spin glasses.Comment: 8 pages, 2 figures, submitted to JPS

    Nonequilibrium work on spin glasses in longitudinal and transverse fields

    Full text link
    We derive a number of exact relations between equilibrium and nonequilibrium quantities for spin glasses in external fields using the Jarzynski equality and gauge symmetry. For randomly-distributed longitudinal fields, a lower bound is established for the work done on the system in nonequilibrium processes, and identities are proven to relate equilibrium and nonequilibrium quantities. In the case of uniform transverse fields, identities are proven between physical quantities and exponentiated work done to the system at different parts of the phase diagram with the context of quantum annealing in mind. Additional relations are given, which relate the exponentiated work in quantum and simulated (classical) annealing. It is also suggested that the Jarzynski equality may serve as a guide to develop a method to perform quantum annealing under non-adiabatic conditions.Comment: 17 pages, 5 figures, submitted to JPS

    Transient fluctuation theorem in closed quantum systems

    Full text link
    Our point of departure are the unitary dynamics of closed quantum systems as generated from the Schr\"odinger equation. We focus on a class of quantum models that typically exhibit roughly exponential relaxation of some observable within this framework. Furthermore, we focus on pure state evolutions. An entropy in accord with Jaynes principle is defined on the basis of the quantum expectation value of the above observable. It is demonstrated that the resulting deterministic entropy dynamics are in a sense in accord with a transient fluctuation theorem. Moreover, we demonstrate that the dynamics of the expectation value are describable in terms of an Ornstein-Uhlenbeck process. These findings are demonstrated numerically and supported by analytical considerations based on quantum typicality.Comment: 5 pages, 6 figure

    Thermodynamic metrics and optimal paths

    Full text link
    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.Comment: 5 page

    The thermodynamics of prediction

    Full text link
    A system responding to a stochastic driving signal can be interpreted as computing, by means of its dynamics, an implicit model of the environmental variables. The system's state retains information about past environmental fluctuations, and a fraction of this information is predictive of future ones. The remaining nonpredictive information reflects model complexity that does not improve predictive power, and thus represents the ineffectiveness of the model. We expose the fundamental equivalence between this model inefficiency and thermodynamic inefficiency, measured by dissipation. Our results hold arbitrarily far from thermodynamic equilibrium and are applicable to a wide range of systems, including biomolecular machines. They highlight a profound connection between the effective use of information and efficient thermodynamic operation: any system constructed to keep memory about its environment and to operate with maximal energetic efficiency has to be predictive.Comment: 5 pages, 1 figur
    • …
    corecore