596 research outputs found

    Fluoride interaction with G-proteins

    Full text link

    Inorganic Polyphosphates Are Important for Cell Survival and Motility of Human Skin Keratinocytes and Play a Role in Wound Healing

    Get PDF
    Inorganic polyphosphate (polyP) is a simple ancient polymer of linear chains of orthophosphate residues linked by high energy phospho-anhydride bonds ubiquitously found in all organisms. Despite its structural simplicity, it plays diverse functional roles. polyP is involved in myriad of processes including serving as microbial phosphagens, buffer against alkalis, Ca2+ storage, metal-chelating agents, pathogen virulence, cell viability and proliferation, structural component and chemical chaperones, and in the microbial stress response. In mammalian cells, polyP has been implicated in blood coagulation, inflammation, bone differentiation, cell bioenergetics, signal transduction, Ca2+-signaling, neuronal excitability, as a protein-stabilizing scaffold, and in wound healing, among others. This chapter will discuss (1) polyP metabolism and roles of polyP in prokaryotic and eukaryotic cells, (2) the contribution of polyP to survival, cell proliferation, and motility involved in wound healing in human skin keratinocytes, (3) the use of polyP-containing platelet-rich plasma (PRP) to promote wound healing in acute and chronic wounds, including burns, and (4) the use of polyP-containing PRP in excisional wound models to promote faster healing. While polyP shows promise as a therapeutic agent to accelerate healing for acute and chronic wounds, the molecular mechanisms as a potent modulator of the wound healing process remain to be elucidated

    Using gene expression data to identify certain gastro-intestinal diseases

    Get PDF
    BACKGROUND: Inflammatory bowel diseases, ulcerative colitis and Crohn’s disease are considered to be of autoimmune origin, but the etiology of irritable bowel syndrome remains elusive. Furthermore, classifying patients into irritable bowel syndrome and inflammatory bowel diseases can be difficult without invasive testing and holds important treatment implications. Our aim was to assess the ability of gene expression profiling in blood to differentiate among these subject groups. METHODS: Transcript levels of a total of 45 genes in blood were determined by quantitative real-time polymerase chain reaction (RT-PCR). We applied three separate analytic approaches; one utilized a scoring system derived from combinations of ratios of expression levels of two genes and two different support vector machines. RESULTS: All methods discriminated different subject cohorts, irritable bowel syndrome from control, inflammatory bowel disease from control, irritable bowel syndrome from inflammatory bowel disease, and ulcerative colitis from Crohn’s disease, with high degrees of sensitivity and specificity. CONCLUSIONS: These results suggest these approaches may provide clinically useful prediction of the presence of these gastro-intestinal diseases and syndromes

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides
    • …
    corecore