2,874 research outputs found

    Ballot papers and the practice of elections: Britain, France and the United States of America, c.1500–2000

    Get PDF
    The humble ballot paper is a defining technology of elections throughout the world. This article interrogates its contested past by demonstrating – over a long period and in the context of three contrasting countries – how and why it emerged in the early modern period and how it was then used, abused and regulated in the context of the expanded, and eventually mass, electoral arenas of the nineteenth and twentieth centuries. Ironically, by the time that the ballot paper was firmly established, its monopoly was already being challenged by mechanical and then electronic media, which may eventually condemn it to extinction

    Single electron charging of impurity sites visualized by scanning gate experiments on a quantum point contact

    Full text link
    A quantum point contact (QPC) patterned on a two-dimensional electron gas is investigated with a scanning gate setup operated at a temperature of 300 mK. The conductance of the point contact is recorded while the local potential is modified by scanning the tip. Single electron charging of impurities induced by the local potential is observed as a stepwise conductance change of the constriction. By selectively changing the state of some of these impurities, it is possible to observe changes in transmission resonances of the QPC. The location of such impurities is determined, and their density is estimated to be below 50 per \mu m^2, corresponding to less than 1 % of the doping concentration

    Identification of genes induced by BRCA1 in breast cancer cells

    Get PDF
    Cataloged from PDF version of article.Inherited mutations of the BRCA1 gene predispose to breast, ovarian, and other cancers. The role of the BRCA1 gene in the maintenance of chromosomal integrity is linked to a number of biological properties of its protein product, including transcriptional regulation. In the present study, we have used suppression subtractive hybridisation (SSH) to identify genes induced by BRCA1 by comparing control MCF7 breast carcinoma cells (driver) with MCF7 cells ectopically expressing BRCA1 (tester) and generated a forward subtracted cDNA library. We screened 500 putative positive clones from this library. Two hundred and ten of these clones were positive by differential screening with forward and reverse subtracted probes and the 65 cDNA clones which showed more than fivefold increase were selected for sequencing analysis. We clustered 46 different genes that share high homology with sequences in the GenBank/EMBL databases. Among these, 30 were genes whose function had been previously identified while the remaining 16 clones were genes with,unknown functions. Of particular interest, BRCA1 gene induces the expression of genes encoding DNA repair proteins RAD21 and MSH2, ERBB2/HER2 interacting protein ERBIN, meningioma-associated protein MAC30, and a candidate ovarian tumour-suppressor OVCA1. Northern and Western blot analyses confirmed that the expression of these five genes are up-regulated following BRCA1 overexpression in MCF7 and UBR60-bcl2 cells. This is the first study reporting a set of BRCA1-induced genes in breast carcinoma cells by the SSH technique. We suggest that some known genes identified in this study may provide new insights into the tumour-suppressor function of BRCA1. (C) 2002 Elsevier Science (USA). All rights reserved

    The relationships between expressed emotion, cortisol, and EEG alpha asymmetry

    Get PDF
    Families can express high criticism, hostility and emotional over-involvement towards a person with or at risk of mental health problems. Perceiving such high expressed emotion (EE) can be a major psychological stressor for individuals, especially those at risk of mental health problems. To reveal the biological mechanisms underlying the effect of EE on health, this study investigated physiological response (salivary cortisol, frontal alpha asymmetry (FAA)) to verbal criticism and their relationship to anxiety and perceived EE. Using a repeated-measures design, healthy participants attended three testing sessions on non-consecutive days. On each day, participants listened to one of three types of auditory stimuli, namely criticism, neutral or praise, and Electroencephalography (EEG) and salivary cortisol were measured. Results showed a reduction in cortisol following criticism but there was no significant change in FAA. Post-criticism cortisol concentration negatively correlated with perceived EE after controlling for baseline mood. Our findings suggest that salivary cortisol change responds to criticism in non-clinical populations might be largely driven by individual differences in the perception of criticism (e.g., arousal and relevance). Criticisms expressed by audio comments may not be explicitly perceived as an acute emotional stressor, and thus, physiological change responds to criticisms could be minimum

    Spatial dependence of the superexchange interactions for transition-metal trimers in graphene

    Full text link
    This study examines the magnetic interactions between spatially-variable manganese and chromium trimers substituted into a graphene superlattice. Using density functional theory, we calculate the electronic band structure and magnetic populations for the determination of the electronic and magnetic properties of the system. To explore the super-exchange coupling between the transition-metal atoms, we establish the magnetic magnetic ground states through a comparison of multiple magnetic and spatial configurations. Through an analysis of the electronic and magnetic properties, we conclude that the presence of transition-metal atoms can induce a distinct magnetic moment in the surrounding carbon atoms as well as produce an RKKY-like super-exchange coupling. It hoped that these simulations can lead to the realization of spintronic applications in graphene through electronic control of the magnetic clusters.Comment: 6 pages, 5 Figur

    TP53 mutations in familial breast cancer: Functional aspects

    Get PDF
    Mutation in p53 (TP53) remains one of the most commonly described genetic events in human neoplasia. The occurrence of mutations is somewhat less common in sporadic breast carcinomas than in other cancers, with an overall frequency of about 20%. There is, however, evidence that p53 is mutated at a significantly higher frequency in breast carcinomas arising in carriers of germ-line BRCA1 and BRCA2 mutations. Some of the p53 mutants identified in BRCA1 and BRCA2 mutation carriers are either previously undescribed or infrequently reported in sporadic human cancers. Functional characterization of such mutants in various systems has revealed that they frequently possess properties not commonly associated with those occurring in sporadic cases: they retain apoptosis-inducing, transactivating, and growth-inhibitory activities similar to the wild-type protein, yet are compromised for transformation suppression and also possess an independent transforming phenotype. The occurrence of such mutants in familial breast cancer implies the operation of distinct selective pressures during tumorigenesis in BRCA-associated breast cancers. © 2003 Wiley-Liss, Inc

    Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons

    Full text link
    Using the non-equilibrium Keldysh Green's function formalism, we investigate the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In particular, we demonstrate that the spatial current patterns associated with discrete transmission resonances sensitively depend on the GNRs' geometry, size, and aspect ratio, the location and number of leads, and the presence of dephasing. We identify a relation between the spatial form of the current patterns, and the number of degenerate energy states participating in the charge transport. Furthermore, we demonstrate a principle of superposition for the conductance and spatial current patterns in multiple-lead configurations. We demonstrate that scanning tunneling microscopy (STM) can be employed to image spatial current paths in GNR with atomic resolution, providing important insight into the form of local charge transport. Finally, we investigate the effects of dephasing on the spatial current patterns, and show that with decreasing dephasing time, the current patterns evolve smoothly from those of a ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure

    Identification of genes induced by BRCA1 in breast cancer cells

    Get PDF
    Inherited mutations of the BRCA1 gene predispose to breast, ovarian, and other cancers. The role of the BRCA1 gene in the maintenance of chromosomal integrity is linked to a number of biological properties of its protein product, including transcriptional regulation. In the present study, we have used suppression subtractive hybridisation (SSH) to identify genes induced by BRCA1 by comparing control MCF7 breast carcinoma cells (driver) with MCF7 cells ectopically expressing BRCA1 (tester) and generated a forward subtracted cDNA library. We screened 500 putative positive clones from this library. Two hundred and ten of these clones were positive by differential screening with forward and reverse subtracted probes and the 65 cDNA clones which showed more than fivefold increase were selected for sequencing analysis. We clustered 46 different genes that share high homology with sequences in the GenBank/EMBL databases. Among these, 30 were genes whose function had been previously identified while the remaining 16 clones were genes with unknown functions. Of particular interest, BRCA1 gene induces the expression of genes encoding DNA repair proteins RAD21 and MSH2, ERBB2/HER2 interacting protein ERBIN, meningioma-associated protein MAC30, and a candidate ovarian tumour-suppressor OVCA1. Northern and Western blot analyses confirmed that the expression of these five genes are up-regulated following BRCA1 overexpression in MCF7 and UBR60-bcl2 cells. This is the first study reporting a set of BRCA1-induced genes in breast carcinoma cells by the SSH technique. We suggest that some known genes identified in this study may provide new insights into the tumour-suppressor function of BRCA1. © 2002 Elsevier Science (USA). All rights reserved

    Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology

    Get PDF
    Plasmids are extra-chromosomal genetic elements ubiquitous in bacteria, and commonly transmissible between host cells. Their genomes include variable repertoires of ‘accessory genes,’ such as antibiotic resistance genes, as well as ‘backbone’ loci which are largely conserved within plasmid families, and often involved in key plasmid-specific functions (e.g., replication, stable inheritance, mobility). Classifying plasmids into different types according to their phylogenetic relatedness provides insight into the epidemiology of plasmid-mediated antibiotic resistance. Current typing schemes exploit backbone loci associated with replication (replicon typing), or plasmid mobility (MOB typing). Conventional PCR-based methods for plasmid typing remain widely used. With the emergence of whole-genome sequencing (WGS), large datasets can be analyzed using in silico plasmid typing methods. However, short reads from popular high-throughput sequencers can be challenging to assemble, so complete plasmid sequences may not be accurately reconstructed. Therefore, localizing resistance genes to specific plasmids may be difficult, limiting epidemiological insight. Long-read sequencing will become increasingly popular as costs decline, especially when resolving accurate plasmid structures is the primary goal. This review discusses the application of plasmid classification in WGS-based studies of antibiotic resistance epidemiology; novel in silico plasmid analysis tools are highlighted. Due to the diverse and plastic nature of plasmid genomes, current typing schemes do not classify all plasmids, and identifying conserved, phylogenetically concordant genes for subtyping and phylogenetics is challenging. Analyzing plasmids as nodes in a network that represents gene-sharing relationships between plasmids provides a complementary way to assess plasmid diversity, and allows inferences about horizontal gene transfer to be made
    corecore