2,320 research outputs found

    A Millikelvin Scanned Probe for Measurement of Nanostructures

    Full text link
    We demonstrate a scanning force microscope, based upon a quartz tuning fork, that operates below 100 mK and in magnetic fields up to 6 T. The microscope has a conducting tip for electrical probing of nanostructures of interest, and it incorporates a low noise cryogenic amplifier to measure both the vibrations of the tuning fork and the electrical signals from the nanostructures. At millikelvin temperatures the imaging resolution is below 1 um in a 22 um x 22 um range, and a coarse motion provides translations of a few mm. This scanned probe is useful for high bandwidth measurement of many high impedance nanostructures on a single sample. We show data locating an SET within an array and measure its coulomb blockade with a sensitivity of 2.6 x 10^-5 e/Hz^1/2.Comment: 5 pages, 5 figures, submitted to RS

    Dynamically-Coupled Oscillators -- Cooperative Behavior via Dynamical Interaction --

    Full text link
    We propose a theoretical framework to study the cooperative behavior of dynamically coupled oscillators (DCOs) that possess dynamical interactions. Then, to understand synchronization phenomena in networks of interneurons which possess inhibitory interactions, we propose a DCO model with dynamics of interactions that tend to cause 180-degree phase lags. Employing an approach developed here, we demonstrate that although our model displays synchronization at high frequencies, it does not exhibit synchronization at low frequencies because this dynamical interaction does not cause a phase lag sufficiently large to cancel the effect of the inhibition. We interpret the disappearance of synchronization in our model with decreasing frequency as describing the breakdown of synchronization in the interneuron network of the CA1 area below the critical frequency of 20 Hz.Comment: 10 pages, 3 figure

    Imaging and controlling electron transport inside a quantum ring

    Full text link
    Traditionally, the understanding of quantum transport, coherent and ballistic1, relies on the measurement of macroscopic properties such as the conductance. While powerful when coupled to statistical theories, this approach cannot provide a detailed image of "how electrons behave down there". Ideally, understanding transport at the nanoscale would require tracking each electron inside the nano-device. Significant progress towards this goal was obtained by combining Scanning Probe Microscopy (SPM) with transport measurements2-7. Some studies even showed signatures of quantum transport in the surrounding of nanostructures4-6. Here, SPM is used to probe electron propagation inside an open quantum ring exhibiting the archetype of electron wave interference phenomena: the Aharonov-Bohm effect8. Conductance maps recorded while scanning the biased tip of a cryogenic atomic force microscope above the quantum ring show that the propagation of electrons, both coherent and ballistic, can be investigated in situ, and even be controlled by tuning the tip potential.Comment: 11 text pages + 3 figure

    Reduced incidence of hypertension after heterotopic cardiac transplantation compared with orthotopic cardiac transplantation Evidence that excision of the native heart contributes to post-transplant hypertension

    Get PDF
    ObjectivesThis study was designed to test the hypothesis that heterotopic heart transplant (HHT) patients have lower blood pressure than orthotopic cardiac transplant (OCT) patients because their native heart is involved in blood pressure homeostasis.BackgroundHypertension occurs more frequently after OCT than after liver or lung transplantation, suggesting that transplantation of the heart itself contributes to post-transplant hypertension.MethodsBlood pressure and related measurements in 233 OCT and 38 HHT patients were studied retrospectively post-transplant.ResultsSystolic blood pressure (SBP) was persistently lower among HHT patients (means 121 vs. 137, 126 vs. 137, 125 vs. 139, and 128 vs. 143 mm Hg at month 3 and years 1, 3, and 5 respectively, p < 0.005). Left ventricular and aortic systolic pressures were also lower (130 vs. 143 mm Hg, p = 0.01 and 129 vs. 142 mm Hg, p = 0.01). Multivariable analysis with age, gender, body mass index, creatinine, steroids, cyclosporine, use of antihypertensive medication, donor left ventricular ejection fraction, donor weight, and type of transplant as covariables showed HHT to be independently associated with a lower SBP at each time point (beta-coefficients −16.2, −12.1, −13.3, and −14.2 mm Hg, p < 0.01). The adjusted hazard ratio for the development of systolic hypertension among HHT compared with OCT patients was 0.59 (95% confidence interval 0.39 to 0.91, p = 0.017).ConclusionsHeterotopic heart transplant patients had lower SBP than OCT patients, consistent with the hypothesis that the native heart continues to contribute to blood pressure homeostasis

    The role of interspecific variability and herbicide pre-adaptation in the cinmethylin response of Alopecurus myosuroides

    Get PDF
    BACKGROUND: Cinmethylin is an inhibitor of plant fatty acid biosynthesis, with in-plant activity caused by its binding to fatty acid thioesterases (FAT). The recent registration of cinmethylin for pre-emergence herbicidal use in the UK represents a new mode of action (MOA) for control of the grassweed blackgrass (Alopecurus myosuroides). To date there is little published information on the extent of blackgrass’ inter-population variability in sensitivity to cinmethylin, nor on any potential effect of existing non-target-site resistance (NTSR) mechanisms on cinmethylin efficacy. RESULTS: Here we present a study of variability in cinmethylin sensitivity amongst 97 UK blackgrass populations. We demonstrate that under controlled conditions, a UK field-rate dose of 500 g ha-1 provides effective control of the tested populations. Nevertheless, we reveal significant inter-population variability at doses below this rate, with populations previously characterised as strongly NTSR displaying the lowest sensitivity to cinmethylin. Assessment of paired resistant “R” and sensitive “S” lines from standardised genetic backgrounds confirms that selection for NTSR to the acetyl-CoA-carboxylase inhibitor fenoxaprop, and the microtubule assembly inhibitor pendimethalin, simultaneously results in reduced sensitivity to cinmethylin at doses below 500 g ha-1. Whilst we find no resistance to the field-rate dose, we reveal that cinmethylin sensitivity can be further reduced through experimental selection with cinmethylin. CONCLUSION: Cinmethylin therefore represents a much-needed further MOA for blackgrass control, but needs to be carefully managed within a resistance monitoring and integrated weed management (IWM) framework to maximise the effective longevity of this compound

    Spatial Current Patterns, Dephasing and Current Imaging in Graphene Nanoribbons

    Full text link
    Using the non-equilibrium Keldysh Green's function formalism, we investigate the local, non-equilibrium charge transport in graphene nanoribbons (GNRs). In particular, we demonstrate that the spatial current patterns associated with discrete transmission resonances sensitively depend on the GNRs' geometry, size, and aspect ratio, the location and number of leads, and the presence of dephasing. We identify a relation between the spatial form of the current patterns, and the number of degenerate energy states participating in the charge transport. Furthermore, we demonstrate a principle of superposition for the conductance and spatial current patterns in multiple-lead configurations. We demonstrate that scanning tunneling microscopy (STM) can be employed to image spatial current paths in GNR with atomic resolution, providing important insight into the form of local charge transport. Finally, we investigate the effects of dephasing on the spatial current patterns, and show that with decreasing dephasing time, the current patterns evolve smoothly from those of a ballistic quantum network to those of classical resistor network.Comment: 25 pages, 12 figure

    Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States

    Get PDF
    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel “vaccine escape recombinant” pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term

    Clinical investigation of an outbreak of alveolitis and asthma in a car engine manufacturing plant

    Get PDF
    Background Exposure to metal working fluid (MWF) has been associated with outbreaks of EAA in the US, with bacterial contamination of MWF being a possible cause, but was uncommon in the UK. Twelve workers developed extrinsic allergic alveolitis (EAA) in a car engine manufacturing plant in the UK, presenting clinically between December 2003 and May 2004. This paper reports the subsequent epidemiological investigation of the whole workforce. This had three aims:- • To measure the extent of the outbreak by identifying other workers who may have developed EAA or other work-related respiratory diseases. • To provide case-detection so that those affected can be treated. • To provide epidemiological data to identify the cause of the outbreak. Methods The outbreak was investigated in a three-phase cross-sectional survey of the workforce. Phase I A respiratory screening questionnaire was completed by 808/836 workers (96.7%) in May 2004. Phase II 481 employees with at least one respiratory symptom on screening and 50 asymptomatic controls were invited for investigation at the factory in June 2004. This included a questionnaire, spirometry and clinical opinion. 454/481(94.4%) responded along with 48/50(96%) controls. Workers were identified who needed further investigation and serial measurements of peak expiratory flow (PEF). Phase III 162 employees were seen at the Birmingham Occupational Lung Disease clinic. 198 employees returned PEF records, including 141 of the 162 who attended for clinical investigation. Case definitions for diagnoses were agreed. Results 87 workers (10.4% of workforce) met case definitions for occupational lung disease, comprising EAA(19), occupational asthma(74) and humidifier fever(7). 12 workers had more than one diagnosis. The peak onset of work-related breathlessness was Spring 2003. The proportion of workers affected was higher for those using metal working fluid (MWF) from a large sump(27.3%) compared with working all over the manufacturing area (7.9%) (OR=4.39,p<0.001). Two workers had positive specific provocation tests to the used but not the unused MWF solution. Conclusions Extensive investigation of the outbreak of EAA detected a large number of affected workers, not only with EAA but also occupational asthma. This is the largest reported outbreak in Europe. Mist from used MWF is the likely cause. In workplaces using MWF, there is a need to carry out risk assessments, to monitor and maintain fluid quality, to control mist and to carry out respiratory health surveillance

    Imaging Inter-Edge State Scattering Centers in the Quantum Hall Regime

    Full text link
    We use an atomic force microscope tip as a local gate to study the scattering between edge channels in a 2D electron gas in the quantum Hall regime. The scattering is dominated by individual, microscopic scattering centers, which we directly image here for the first time. The tip voltage dependence of the scattering indicates that tunneling occurs through weak links and localized states.Comment: 4 pages, 5 figure
    corecore