research

A Millikelvin Scanned Probe for Measurement of Nanostructures

Abstract

We demonstrate a scanning force microscope, based upon a quartz tuning fork, that operates below 100 mK and in magnetic fields up to 6 T. The microscope has a conducting tip for electrical probing of nanostructures of interest, and it incorporates a low noise cryogenic amplifier to measure both the vibrations of the tuning fork and the electrical signals from the nanostructures. At millikelvin temperatures the imaging resolution is below 1 um in a 22 um x 22 um range, and a coarse motion provides translations of a few mm. This scanned probe is useful for high bandwidth measurement of many high impedance nanostructures on a single sample. We show data locating an SET within an array and measure its coulomb blockade with a sensitivity of 2.6 x 10^-5 e/Hz^1/2.Comment: 5 pages, 5 figures, submitted to RS

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019