11 research outputs found

    Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    Get PDF
    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretization. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretization. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microsesimic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology

    Reservoir stress path and induced seismic anisotropy: Results from linking coupled fluid-flow/geomechanical simulation with seismic modelling

    Get PDF
    We present a workflow linking coupled fluid-flow and geomechanical simulation with seismic modelling to predict seismic anisotropy induced by nonhydrostatic stress changes. We generate seismic models from coupled simulations to examine the relationship between reservoir geometry, stress path and seismic anisotropy. The results indicate that geometry influences the evolution of stress, which leads to stress-induced seismic anisotropy. Although stress anisotropy is high for the small reservoir, the effect of stress arching and the ability of the side-burden to support the excess load limit the overall change in effective stress and hence seismic anisotropy. For the extensive reservoir, stress anisotropy and induced seismic anisotropy are high. The extensive and elongate reservoirs experience significant compaction, where the inefficiency of the developed stress arching in the side-burden cannot support the excess load. The elongate reservoir displays significant stress asymmetry, with seismic anisotropy developing predominantly along the long-edge of the reservoir. We show that the link between stress path parameters and seismic anisotropy is complex, where the anisotropic symmetry is controlled not only by model geometry but also the nonlinear rock physics model used. Nevertheless, a workflow has been developed to model seismic anisotropy induced by non-hydrostatic stress changes, allowing field observations of anisotropy to be linked with geomechanical models

    Reservoir stress path characterization and its implications for fluid-flow production simulation

    No full text
    The reduction of fluid pressure during reservoir production promotes changes in the effective and total stress distribution within the reservoir and the surrounding strata. This stress evolution is responsible for many problems encountered during production (e.g. fault reactivation, casing deformation). This work presents the results of an extensive series of 3D numerical hydro-mechanical coupled analyses that study the influence of reservoir geometry and material properties on the reservoir stress path. The stress path is defined in terms of parameters that quantify the amount of stress arching and stress anisotropy that occur during reservoir production. The coupled simulations are performed by explicitly coupling independent commercial geomechanical and flow simulators. It is shown that stress arching is important in reservoirs with low aspect ratios that are less stiff than the bounding material. In such cases, the stresses will not significantly evolve in the reservoir, and stress evolution occurs in the over- and sideburden. Stiff reservoirs, relative to the bounding rock, exhibit negligible stress arching regardless of the geometry. Stress anisotropy reduces with reduction of the Young's modulus of the bounding material, especially for low aspect ratio reservoirs, but as the reservoir extends in either or both of the horizontal directions, the reservoir deforms uniaxially and the horizontal stress evolution is governed by the Poisson's ratio of the reservoir. Furthermore, the effect of the stress path parameters is introduced in the calculation of pore volume multiplier tables to improve non-coupled simulations, which otherwise overestimate the average reservoir pore pressure drawdown when stress arching is taking place
    corecore