343 research outputs found

    Genomics Underlying Familial Thyroid Carcinoma in Dogs

    Get PDF
    Thyroid cancer is the most common endocrine neoplasm occurring in dogs. We reported familial thyroid follicular cell carcinomas (FCCs) in 54 Dutch German longhaired pointer (GLP) dogs. We investigated the genetics of the FCC in these dogs, including the germline risk mutations and somatic driver mutations. We identified the germline risk factor locating in the TPO gene for these hereditary FCCs through a combination of genome-wide association study (GWAS) and homozygosity mapping analyses using SNP array genotype data and whole-genome sequencing data. We further investigated the somatic mutation landscape of these FCCs using high-depth whole-genome sequencing technology of the tumors. A recurrent missense mutation in the GNAS gene was identified as a very promising driver mutation. We validated this somatic mutation using Sanger sequencing and revealed a prevalence of 62.5% among thyroid tumors identified in the Dutch GLPs. In addition, we can also review the findings in genetics of other canine thyroid tumors in recent years

    Assessing the contribution of breeds to genetic diversity in conservation schemes

    Get PDF
    The quantitative assessment of genetic diversity within and between populations is important for decision making in genetic conservation plans. In this paper we define the genetic diversity of a set of populations, S, as the maximum genetic variance that can be obtained in a random mating population that is bred from the set of populations S. First we calculated the relative contribution of populations to a core set of populations in which the overlap of genetic diversity was minimised. This implies that the mean kinship in the core set should be minimal. The above definition of diversity differs from Weitzman diversity in that it attempts to conserve the founder population (and thus minimises the loss of alleles), whereas Weitzman diversity favours the conservation of many inbred lines. The former is preferred in species where inbred lines suffer from inbreeding depression. The application of the method is illustrated by an example involving 45 Dutch poultry breeds. The calculations used were easy to implement and not computer intensive. The method gave a ranking of breeds according to their contributions to genetic diversity. Losses in genetic diversity ranged from 2.1% to 4.5% for different subsets relative to the entire set of breeds, while the loss of founder genome equivalents ranged from 22.9% to 39.3%

    Regional regulation of transcription in the chicken genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past years, the relationship between gene transcription and chromosomal location has been studied in a number of different vertebrate genomes. Regional differences in gene expression have been found in several different species. The chicken genome, as the closest sequenced genome relative to mammals, is an important resource for investigating regional effects on transcription in birds and studying the regional dynamics of chromosome evolution by comparative analysis.</p> <p>Results</p> <p>We used gene expression data to survey eight chicken tissues and create transcriptome maps for all chicken chromosomes. The results reveal the presence of two distinct types of chromosomal regions characterized by clusters of highly or lowly expressed genes. Furthermore, these regions correlate highly with a number of genome characteristics. Regions with clusters of highly expressed genes have higher gene densities, shorter genes, shorter average intron and higher GC content compared to regions with clusters of lowly expressed genes. A comparative analysis between the chicken and human transcriptome maps constructed using similar panels of tissues suggests that the regions with clusters of highly expressed genes are relatively conserved between the two genomes.</p> <p>Conclusions</p> <p>Our results revealed the presence of a higher order organization of the chicken genome that affects gene expression, confirming similar observations in other species. These results will aid in the further understanding of the regional dynamics of chromosome evolution.</p> <p>The microarray data used in this analysis have been submitted to NCBI GEO database under accession number GSE17108. The reviewer access link is: <url>http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GSE17108</url></p

    Large scale variation in DNA copy number in chicken breeds

    Get PDF
    Background Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, copy number variation (CNV), is emerging as a significant contributor to phenotypic variation in many species. Here we describe a genome-wide CNV study using array comparative genomic hybridization (aCGH) in a wide variety of chicken breeds. Results We identified 3,154 CNVs, grouped into 1,556 CNV regions (CNVRs). Thirty percent of the CNVs were detected in at least 2 individuals. The average size of the CNVs detected was 46.3 kb with the largest CNV, located on GGAZ, being 4.3 Mb. Approximately 75% of the CNVs are copy number losses relatively to the Red Jungle Fowl reference genome. The genome coverage of CNVRs in this study is 60 Mb, which represents almost 5.4% of the chicken genome. In particular large gene families such as the keratin gene family and the MHC show extensive CNV. Conclusions A relative large group of the CNVs are line-specific, several of which were previously shown to be related to the causative mutation for a number of phenotypic variants. The chance that inter-specific CNVs fall into CNVRs detected in chicken is related to the evolutionary distance between the species. Our results provide a valuable resource for the study of genetic and phenotypic variation in this phenotypically diverse species

    Partial duplication of the PRLR and SPEF2 genes at the late feathering locus in chicken

    Get PDF
    Background One of the loci responsible for feather development in chickens is K. The K allele is partially dominant to the k+ allele and causes a retard in the emergence of flight feathers at hatch. The K locus is sex linked and located on the Z chromosome. Therefore, the locus can be utilized to produce phenotypes that identify the sexes of chicks at hatch. Previous studies on the organization of the K allele concluded the integration of endogenous retrovirus 21 (ev21) into one of two large homologous segments located on the Z chromosome of late feathering chickens. In this study, a detailed molecular analysis of the K locus and a DNA test to distinguish between homozygous and heterozygous late feathering males are presented. Results The K locus was investigated with quantitative PCR by examining copy number variations in a total of fourteen markers surrounding the ev21 integration site. The results showed a duplication at the K allele and sequence analysis of the breakpoint junction indicated a tandem duplication of 176,324 basepairs. The tandem duplication of this region results in the partial duplication of two genes; the prolactin receptor and the gene encoding sperm flagellar protein 2. Sequence analysis revealed that the duplication is similar in Broiler and White Leghorn. In addition, twelve late feathering animals, including Broiler, White Leghorn, and Brown Layer lines, contained a 78 bp breakpoint junction fragment, indicating that the duplication is similar in all breeds. The breakpoint junction was used to develop a TaqMan-based quantitative PCR test to allow distinction between homozygous and heterozygous late feathering males. In total, 85.3% of the animals tested were correctly assigned, 14.7% were unassigned and no animals were incorrectly assigned. Conclusion The detailed molecular analysis presented in this study revealed the presence of a tandem duplication in the K allele. The duplication resulted in the partial duplication of two genes; the prolactin receptor and the gene encoding sperm flagellar protein 2. Furthermore, a DNA test was developed to distinguish between homozygous and heterozygous late feathering males

    Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication

    Get PDF
    Microsatellite diversity in European and Chinese pigs was assessed using a pooled sampling method on 52 European and 46 Chinese pig populations. A Neighbor Joining analysis on genetic distances revealed that European breeds were grouped together and showed little evidence for geographic structure, although a southern European and English group could tentatively be assigned. Populations from international breeds formed breed specific clusters. The Chinese breeds formed a second major group, with the Sino-European synthetic Tia Meslan in-between the two large clusters. Within Chinese breeds, in contrast to the European pigs, a large degree of geographic structure was noted, in line with previous classification schemes for Chinese pigs that were based on morphology and geography. The Northern Chinese breeds were most similar to the European breeds. Although some overlap exists, Chinese breeds showed a higher average degree of heterozygosity and genetic distance compared to European ones. Between breed diversity was even more pronounced and was the highest in the Central Chinese pigs, reflecting the geographically central position in China. Comparing correlations between genetic distance and heterozygosity revealed that China and Europe represent different domestication or breed formation processes. A likely cause is a more diverse wild boar population in Asia, but various other possible contributing factors are discussed

    Deleterious Mutations in the TPO Gene Associated with Familial Thyroid Follicular Cell Carcinoma in Dutch German Longhaired Pointers

    Get PDF
    Familial thyroid cancer originating from follicular cells accounts for 5–15% of all the thyroid carcinoma cases in humans. Previously, we described thyroid follicular cell carcinomas in a large number of the Dutch German longhaired pointers (GLPs) with a likely autosomal recessive inheritance pattern. Here, we investigated the genetic causes of the disease using a combined approach of genome-wide association study and runs of homozygosity (ROH) analysis based on 170k SNP array genotype data and whole-genome sequences. A region 0–5 Mb on chromosome 17 was identified to be associated with the disease. Whole-genome sequencing revealed many mutations fitting the recessive inheritance pattern in this region including two deleterious mutations in the TPO gene, chr17:800788G>A (686F>V) and chr17:805276C>T (845T>M). These two SNP were subsequently genotyped in 186 GLPs (59 affected and 127 unaffected) and confirmed to be highly associated with the disease. The recessive genotypes had higher relative risks of 16.94 and 16.64 compared to homozygous genotypes for the reference alleles, respectively. This study provides novel insight into the genetic causes leading to the familial thyroid follicular cell carcinoma, and we were able to develop a genetic test to screen susceptible dogs.</p

    A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the Turkey and Chicken genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The turkey (<it>Meleagris gallopavo</it>) is an important agricultural species that is the second largest contributor to the world's poultry meat production. The genomic resources of turkey provide turkey breeders with tools needed for the genetic improvement of commercial breeds of turkey for economically important traits. A linkage map of turkey is essential not only for the mapping of quantitative trait loci, but also as a framework to enable the assignment of sequence contigs to specific chromosomes. Comparative genomics with chicken provides insight into mechanisms of genome evolution and helps in identifying rare genomic events such as genomic rearrangements and duplications/deletions.</p> <p>Results</p> <p>Eighteen full sib families, comprising 1008 (35 F1 and 973 F2) birds, were genotyped for 775 single nucleotide polymorphisms (SNPs). Of the 775 SNPs, 570 were informative and used to construct a linkage map in turkey. The final map contains 531 markers in 28 linkage groups. The total genetic distance covered by these linkage groups is 2,324 centimorgans (cM) with the largest linkage group (81 loci) measuring 326 cM. Average marker interval for all markers across the 28 linkage groups is 4.6 cM. Comparative mapping of turkey and chicken revealed two inter-, and 57 intrachromosomal rearrangements between these two species.</p> <p>Conclusion</p> <p>Our turkey genetic map of 531 markers reveals a genome length of 2,324 cM. Our linkage map provides an improvement of previously published maps because of the more even distribution of the markers and because the map is completely based on SNP markers enabling easier and faster genotyping assays than the microsatellitemarkers used in previous linkage maps. Turkey and chicken are shown to have a highly conserved genomic structure with a relatively low number of inter-, and intrachromosomal rearrangements.</p

    Genetic variances, heritabilities and maternal effects on body weight, breast meat yield, meat quality traits and the shape of the growth curve in turkey birds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Turkey is an important agricultural species and is largely used as a meat bird. In 2004, turkey represented 6.5% of the world poultry meat production. The world-wide turkey population has rapidly grown due to increased commercial farming. Due to the high demand for turkey meat from both consumers and industry global turkey stocks increased from 100 million in 1970 to over 276 million in 2004. This rapidly increasing importance of turkeys was a reason to design this study for the estimation of genetic parameters that control body weight, body composition, meat quality traits and parameters that shape the growth curve in turkey birds.</p> <p>Results</p> <p>The average heritability estimate for body weight traits was 0.38, except for early weights that were strongly affected by maternal effects. This study showed that body weight traits, upper asymptote (a growth curve trait), percent breast meat and redness of meat had high heritability whereas heritabilities of breast length, breast width, percent drip loss, ultimate pH, lightness and yellowness of meat were medium to low. We found high positive genetic and phenotypic correlations between body weight, upper asymptote, most breast meat yield traits and percent drip loss but percent drip loss was found strongly negatively correlated with ultimate pH. Percent breast meat, however, showed genetic correlations close to zero with body weight traits and upper asymptote.</p> <p>Conclusion</p> <p>The results of this analysis and the growth curve from the studied population of turkey birds suggest that the turkey birds could be selected for breeding between 60 and 80 days of age in order to improve overall production and the production of desirable cuts of meat. The continuous selection of birds within this age range could promote high growth rates but specific attention to meat quality would be needed to avoid a negative impact on the quality of meat.</p

    Mapping the Naked Neck (NA) and Polydactyly (PO) mutants of the chicken with microsatellite molecular markers

    Get PDF
    The bulked segregant analysis methodology has been used to map, with microsatellite markers, two morphological mutations in the chicken: polydactyly (PO) and naked neck (NA). These autosomal mutations show partial dominance for NA, and dominance with incomplete penetrance for PO. They were mapped previously to different linkage groups of the classical map, PO to the linkage group IV and NA being linked to the erythrocyte antigen CPPP. An informative family of 70 offspring was produced by mating a sire, heterozygous for each of the mutations, to 7 dams homozygous recessive for each locus. Three DNA pools were prepared, pool PO included 20 chicks exhibiting at least one extra-toe, pool NA included 20 non-polydactyly chicks showing the typical phenotype associated with heterozygosity for the naked neck mutation, and pool NP included 20 chicks exhibiting neither of the mutant phenotypes. Typings were done on an ABI-373 automatic sequencer with 147 microsatellite markers covering most of the genome. An unbalanced distribution of sire marker alleles were detected between pool PO, and pools NA and NP, for two markers of chromosome 2p, MCW0082 and MCW0247. A linkage analysis taking into account the incomplete penetrance of polydactyly (80%) was performed with additional markers of this region and showed that the closest marker to the PO locus was MCW0071 (5 cM, lod score = 9). MCW0071 lies within the engrailed gene EN2 in the chicken. In the mouse, the homologous gene maps on chromosome 5, close to the hemimelic extra-toes mutation Hx. In the case of the NA locus, markers of chromosome 3 were selected because CPPP was mapped on this chromosome. Analysis of individual typings showed a linkage of 5.7 cM (lod score = 13) between the NA locus and ADL0237 in the distal region of chromosome 3q. These results contribute to connecting the former classical map to the molecular genetic map of the chicken, and open the way to the identification of the molecular nature of two developmental mutations of the chicken that are known to occur in many breeds of chickens
    corecore