9 research outputs found

    Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference

    Get PDF
    BACKGROUND: Genome-wide RNA interference (RNAi) screening is a very powerful tool for analyzing gene function in vivo in Caenorhabditis elegans. The effectiveness of RNAi varies from gene to gene, however, and neuronally expressed genes are largely refractive to RNAi in wild-type worms. RESULTS: We found that C. elegans strains carrying mutations in lin-35, the worm ortholog of the tumor suppressor gene p105Rb, or a subset of the genetically related synMuv B family of chromatin-modifying genes, show increased strength and penetrance for many germline, embryonic, and post-embryonic RNAi phenotypes, including neuronal RNAi phenotypes. Mutations in these same genes also enhance somatic transgene silencing via an RNAi-dependent mechanism. Two genes, mes-4 and zfp-1, are required both for the vulval lineage defects resulting from mutations in synMuv B genes and for RNAi, suggesting a common mechanism for the function of synMuv B genes in vulval development and in regulating RNAi. Enhanced RNAi in the germline of lin-35 worms suggests that misexpression of germline genes in somatic cells cannot alone account for the enhanced RNAi observed in this strain. CONCLUSION: A worm strain with a null mutation in lin-35 is more sensitive to RNAi than any other previously described single mutant strain, and so will prove very useful for future genome-wide RNAi screens, particularly for identifying genes with neuronal functions. As lin-35 is the worm ortholog of the mammalian tumor suppressor gene p105Rb, misregulation of RNAi may be important during human oncogenesis

    Nuclear receptor binding protein 1 regulates intestinal progenitor cell homeostasis and tumour formation.

    Get PDF
    Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let-60(n1046gf), a strain with a gain-of-function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression

    Histone hairpin binding protein, an RNA binding protein, essential for development

    No full text
    Replication-dependent histone mRNAs are not polyadenylated; their 3’ end recognised by the Hairpin Binding Protein, HBP (also known as Stem-Loop Binding Protein SLBP).  This protein-RNA interaction is important for the endonucleolytic cleavage that generates the mature mRNA 3’ end. The 3’ hairpin, and presumably HBP, are also required for nucleocytoplasmic transport, translation and stability of histone mRNAs. It is therefore important to understand this interaction.  The hairpin is highly conserved and I have demonstrated that residues in the hairpin loop are important for binding the HBP. This complemented structural studies that showed that the same residues are involved in stacking interactions in the RNA loop. In cell culture, expression of replication-dependent histone genes is S phase specific as is the expression of HBP.  Here I demonstrated that in Caenorhabditis elegans the HBP promoter is active in dividing cells during embryonic and postembryonic development.  Depletion of HBP by RNAi leads to an embryonic lethal phenotype associated with defects in chromosome condensation. Postembryonic depletion of HBP results in defects in cell fate during late larval development, specifically in vulval development. A similar phenotype was obtained when histone H3 and H2A were depleted by RNAi suggesting that the phenotype of the hbp (RNAi) worms was due to a lack of histone proteins.  I have confirmed this by showing that histone proteins are indeed reduced in hbp (RNAi) worms. I have also shown that depletion of HBP leads to a change in expression of a number of other proteins and specifically an up-regulation of a histone H3 like protein with an apparent molecular mass of 34 kDa. I have evidence that suggests that this protein is the centromer specific protein, CENP-A.  As this protein was up-regulated when RNAi was used to deplete histones proteins, this suggests that there could be a compensatory mechanism that helps the animal to deal with the shortage of histone proteins.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The Caenorhabditis elegans histone hairpin-binding protein is required for core histone gene expression and is essential for embryonic and postembryonic cell division.

    No full text
    As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development

    Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression.

    No full text
    Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism
    corecore