23 research outputs found

    Contribution à l’étude du vieillissement facial. Evolution des tissus mous

    Get PDF
    Ageing of the face is one of the most apparent. Face varies in shape and aspect. The reasons of these modifications are various: skin ageing, lost of teeth, changes in facial skeleton and modifications of the whole facial soft tissues.Soft tissues evolution in mentalis and anterior nasal spin regions was studied on a 206, 21 to 101 years old subjects population.It was shown that in both men and women samples the soft tissues thickness increase in the mentalis region and decrease in that of anterior nasal spin.Le vieillissement facial est l’un des plus visibles. Le visage change d’aspect et de forme. Les causes de ces transformations sont multiples: sénescence du revêtement cutané lui-même, apparition des édentements, modifications du squelette facial, modifications des tissus mous faciaux dans leur ensemble. Les tissus mous des régions mentonnière et naso-labiale ont été étudiés sur une population de 206 sujets âgés de 21 à 101 ans. Il apparait que l’épaisseur des tissus mous dans la région du menton augmente avec l’âge chez l’homme et chez la femme, que cette augmentation est plus nette chez cette dernière et qu’elle se manifeste dans les deux sexes vers cinquante ans. Au contraire, l’épaisseur des tissus mous dans la région naso-labiale évolue dans le sens de la diminution dans les deux sexes et d’une façon plus progressive au cours de la vie.Il est vraisemblable que l’on puisse rapprocher ces modifications morphologiques de l’existence d’une activité fonctionnelle différente des tissus mous des étages moyen et inférieur de la face

    Le pré-maxillaire. Ses variations transversales au cours de la croissance

    No full text
    With teleradiographies in norma lateralis incidence, we have carried out measures of symphysa axis, premaxilla axis, Downs mandibular plane, palate plane, and Blocquel's pterygoclivis compasses. After a correlation study between those different variables, it seems that symphysa and premaxilla should be strougly correlated so that it shoud be a real adaptation of the prehension zone.A l’aide de téléradiographies en norma latéralis, nous avons effectué des mesures entre l’axe de la symphyse, l’axe du pré-maxillaire, le plan mandibulaire de Downs, l’axe des lames palatines secondaires et le compas ptérygoïdien de Blocquel. Après étude corrélative entre ces différentes variables, il semblerait que la symphyse et le pré-maxillaire soient fortement corrélés de telle manière qu’il y ait une adaptation de la zone de préhension

    Immunization with Ehrlichia P28 Outer Membrane Proteins Confers Protection in a Mouse Model of Ehrlichiosisâ–¿

    No full text
    The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the etiologic agent of human monocytotropic ehrlichiosis (HME). HME is an emerging and often life-threatening, tick-transmitted infectious disease in the United States. Effective primary immune responses against Ehrlichia infection involve generation of Ehrlichia-specific gamma interferon (IFN-γ)-producing CD4+ T cells and cytotoxic CD8+ T cells, activation of macrophages by IFN-γ, and production of Ehrlichia-specific antibodies of the Th1 isotype. Currently, there are no vaccines available against HME. We evaluated the ability of 28-kDa outer membrane proteins (P28-OMP-1) of the closely related Ehrlichia muris to stimulate long-term protective memory T and B cell responses and confer protection in mice. The spleens of mice vaccinated with E. muris P28-9, P28-12, P28-19, or a mixture of these three P28 proteins (P28s) using a DNA prime-protein boost regimen and challenged with E. muris had significantly lower bacterial loads than the spleens of mock-vaccinated mice. Mice immunized with P28-9, P28-12, P28-19, or the mixture induced Ehrlichia-specific CD4+ Th1 cells. Interestingly, mice immunized with P28-14, orthologs of which in E. chaffeensis and E. canis are primarily expressed in tick cells, failed to lower the ehrlichial burden in the spleen. Immunization with the recombinant P28-19 protein alone also significantly decreased the bacterial load in the spleen and liver compared to those of the controls. Our study reports, for the first time, the protective roles of the Ehrlichia P28-9 and P28-12 proteins in addition to confirming previous reports of the protective ability of P28-19. Partial protection induced by immunization with P28-9, P28-12, and P28-19 against Ehrlichia was associated with the generation of Ehrlichia-specific cell-mediated and humoral immune responses

    The NSP3 protein of SARS-CoV-2 binds fragile X mental retardation proteins to disrupt UBAP2L interactions

    No full text
    Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome
    corecore