2,687 research outputs found
Landscape response to Pleistocene-Holocene precipitation change in the Western Cordillera, Peru: 10Be concentrations in modern sediments and terrace fills
The landscape response to climate change is frequently investigated with models because natural experiments on geologic timescales are rare. In Quebrada Veladera, in the western Andes Mountains, the formation of alluvial terraces during periods of high precipitation presents opportunities for such an experiment. We compare drainage-average erosion rates during Pleistocene terrace deposition with Holocene rates, using cosmogenic 10Be samples for seven pairs of quartz sand taken from the trunk and tributaries of Quebrada Veladera and adjacent terraces. Each pair consists of sediment collected from the modern channel and excavated from an adjacent fill terrace. The terrace fill was deposited at ~16 ka and preserved an isotopic record of paleoerosion rates in the Late Pleistocene. Modern sands yield 10Be concentrations between 1.68 × 105 and 2.28 × 105 atoms/g, corresponding to Holocene erosion rates between 43 ± 3 and 58 ± 4 mm/kyr. The 10Be concentrations in terrace sands range from 9.46 × 104 to 3.73 × 105 atoms/g, corresponding to paleoerosion rates from 27 ± 2 to 103 ± 8 mm/kyr. Smaller, upstream tributaries show a substantial decline in erosion rate following the transition from a wet to dry climate, but larger drainage areas show no change. We interpret this trend to indicate that the wetter climate drove landscape dissection, which ceased with the return to dry conditions. As channel heads propagated upslope, erosion accelerated in low-order drainages before higher-order ones. This contrast disappeared when the drainage network ceased to expand; at that point, erosion rates became spatially uniform, consistent with the uniformity of modern hillslope gradients. Key Points Landscape response to climate change evaluated with 10Be erosion rates Wetter climate associated with rapid erosion in smaller, upstream drainages Drier, Holocene climate associated with spatially uniform erosion rates ©2013. American Geophysical Union. All Rights Reserved
Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX
The evolution of electromagnetic wave polarization is modeled for propagation
in the major radial direction in the National Spherical Torus Experiment (NSTX)
with retroreflection from the center stack of the vacuum vessel. This modeling
illustrates that the Cotton-Mouton effect-elliptization due to the magnetic
field perpendicular to the propagation direction-is shown to be strongly
weighted to the high-field region of the plasma. An interaction between the
Faraday rotation and Cotton-Mouton effects is also clearly identified.
Elliptization occurs when the wave polarization direction is neither parallel
nor perpendicular to the local transverse magnetic field. Since Faraday
rotation modifies the polarization direction during propagation, it must also
affect the resultant elliptization. The Cotton-Mouton effect also intrinsically
results in rotation of the polarization direction, but this effect is less
significant in the plasma conditions modeled. The interaction increases at
longer wavelength, and complicates interpretation of polarimetry measurements.Comment: Contributed paper published as part of the Proceedings of the 18th
Topical Conference on High-Temperature Plasma Diagnostics, Wildwood, New
Jersey, May, 201
Quantifying non-star formation associated 8um dust emission in NGC 628
Combining Ha and IRAC images of the nearby spiral galaxy NGC 628, we find
that between 30-43% of its 8um dust emission is not related to recent star
formation. Contributions from dust heated by young stars are separated by
identifying HII regions in the Ha map and using these areas as a mask to
determine the 8um dust emission that must be due to heating by older stars.
Corrections are made for sub-detection-threshold HII regions, photons escaping
from HII regions and for young stars not directly associated to HII regions
(i.e. 10-100 Myr old stars). A simple model confirms this amount of 8um
emission can be expected given dust and PAH absorption cross-sections, a
realistic star-formation history, and the observed optical extinction values. A
Fourier power spectrum analysis indicates that the 8um dust emission is more
diffuse than the Ha emission (and similar to observed HI), supporting our
analysis that much of the 8um-emitting dust is heated by older stars. The 8um
dust-to-Ha emission ratio declines with galactocentric radius both within and
outside of HII regions, probably due to a radial increase in disk transparency.
In the course of this work, we have also found that intrinsic diffuse Ha
fractions may be lower than previously thought in galaxies, if the differential
extinction between HII regions and diffuse regions is taken into account.Comment: 14 pages, 11 figures, accepted in Ap
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Radio and gamma-ray constraints on dark matter annihilation in the Galactic center
We determine upper limits on the dark matter (DM) self-annihilation cross
section for scenarios in which annihilation leads to the production of
electron--positron pairs. In the Galactic centre (GC), relativistic electrons
and positrons produce a radio flux via synchroton emission, and a gamma ray
flux via bremsstrahlung and inverse Compton scattering. On the basis of
archival, interferometric and single-dish radio data, we have determined the
radio spectrum of an elliptical region around the Galactic centre of extent 3
degrees semi-major axis (along the Galactic plane) and 1 degree semi-minor axis
and a second, rectangular region, also centered on the GC, of extent 1.6
degrees x 0.6 degrees. The radio spectra of both regions are non-thermal over
the range of frequencies for which we have data: 74 MHz -- 10 GHz. We also
consider gamma-ray data covering the same region from the EGRET instrument
(about GeV) and from HESS (around TeV). We show how the combination of these
data can be used to place robust constraints on DM annihilation scenarios, in a
way which is relatively insensitive to assumptions about the magnetic field
amplitude in this region. Our results are approximately an order of magnitude
more constraining than existing Galactic centre radio and gamma ray limits. For
a DM mass of m_\chi =10 GeV, and an NFW profile, we find that the
velocity-averaged cross-section must be less than a few times 10^-25 cm^3 s^-1.Comment: 14 pages, 9 figures. Version accepted for publication in PRD.
Reference section updated/extended
Comparing [CII], HI, and CO dynamics of nearby galaxies
The HI and CO components of the interstellar medium (ISM) are usually used to
derive the dynamical mass M_dyn of nearby galaxies. Both components become too
faint to be used as a tracer in observations of high-redshift galaxies. In
those cases, the 158 m line of atomic carbon [CII] may be the only way to
derive M_dyn. As the distribution and kinematics of the ISM tracer affects the
determination of M_dyn, it is important to quantify the relative distributions
of HI, CO and [CII]. HI and CO are well-characterised observationally, however,
for [CII] only very few measurements exist. Here we compare observations of CO,
HI, and [CII] emission of a sample of nearby galaxies, drawn from the HERACLES,
THINGS and KINGFISH surveys. We find that within R_25, the average [CII]
exponential radial profile is slightly shallower than that of the CO, but much
steeper than the HI distribution. This is also reflected in the integrated
spectrum ("global profile"), where the [CII] spectrum looks more like that of
the CO than that of the HI. For one galaxy, a spectrally resolved comparison of
integrated spectra was possible; other comparisons were limited by the
intrinsic line-widths of the galaxies and the coarse velocity resolution of the
[CII] data. Using high-spectral-resolution SOFIA [CII] data of a number of star
forming regions in two nearby galaxies, we find that their [CII] linewidths
agree better with those of the CO than the HI. As the radial extent of a given
ISM tracer is a key input in deriving M_dyn from spatially unresolved data, we
conclude that the relevant length-scale to use in determining M_dyn based on
[CII] data, is that of the well-characterised CO distribution. This length
scale is similar to that of the optical disk.Comment: Accepted for publication in the Astronomical Journa
Stress-Dependent Elasticity of Composite Actin Networks as a Model for Cell Behavior
Networks of filamentous actin cross-linked with the actin-binding protein filamin A exhibit remarkable strain stiffening leading to an increase in differential elastic modulus by several orders of magnitude over the linear value. The variation of the frequency dependence of the differential elastic and loss moduli as a function of prestress is consistent with that observed in living cells, suggesting that cell elasticity is always measured in the nonlinear regime, and that prestress is an essential control parameter
- …