16 research outputs found

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Risk stratification in hypertrophic cardiomyopathy

    Full text link
    peer reviewedHypertrophic cardiomyopathy is of genetic origin, characterized by asymmetric left ventricular hypertrophy and variable clinical presentation. The physiopathology includes diastolic dysfunction and, in one third of the patients, dynamic left ventricular outflow tract obstruction. Patients are at increased risk of sudden death. Risk stratification in the individual patient is an essential component of management. This article describes the clinical presentation of a patient and his mother and summarizes essential features of the disease and the current recommendations for the prevention of sudden cardiac death

    Sargassum (Fucales, Phaeophyceae) in Mauritius and Reunion, western Indian Ocean : taxonomic revision and biogeography using hydrodynamic dispersal models

    No full text
    Mauritius and Reunion are part of the Mascarene Islands situated in the southwestern Indian Ocean, c. 800 km east of Madagascar. A total of 44 different Sargassum species and subspecific taxa was listed in the literature for these islands. This was a remarkable number for such isolated and small islands, and was more than have been recorded from Madagascar or other East African countries. The first aim of our study was to revise these species lists using newly collected specimens to provide a reliable and illustrated tool for the identification of the Mauritian and Reunion Sargassum. On the basis of morphological and molecular analyses, a total of six taxa was identified as S. cymosum f. borbonicum, S. obovatum, S. pfeifferae (reinstated), S. polycystum, S. portierianum and S. robillardii (stat. nov.). A seventh taxon, S. scopula, was identified from a herbarium collection but not re-collected. As a result of our taxonomic revision, we concluded that most of the species listed in the literature for both Mauritius and Reunion were misidentifications or synonyms, and we proposed three new taxonomic synonyms. The biogeography of the six Sargassum taxa was further investigated using local and regional hydrodynamic dispersal models. Results underlined the isolated position of the Mascarene Islands with (1) unlikely import of Sargassum in present-day conditions, (2) likely dispersal/exchanges within the archipelago and (3) a two-pronged export of Sargassum to the east coast of Madagascar and the Seychelles with a major stream northwestward and a weaker stream southwestward. These oceanic conditions had probably shaped the Sargassum diversity of the Mascarene Islands and in particular explained the endemicity of S. cymosum f. borbonicum and restricted distribution of S. obovatum, S. pfeifferae, S. robillardii and S. scopula

    Global spatial risk assessment of sharks under the footprint of fisheries

    No full text
    Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    No full text
    [Extract] Our previously published paper1 provided global fine-scale spatiotemporal estimates (1° × 1°; monthly) of overlap and fishing exposure risk (FEI) between satellite-tracked shark space use and automatic identification system (AIS) longline fishing effort. We did not assess shark mortality directly, but in addition to replying to the Comment by Murua et al.2, we confirm—using regression analysis of spatially matched data—that fishing-induced pelagic shark mortality (catch per unit effort (CPUE)) is greater where FEI is higher. We focused on assessing shark horizontal spatiotemporal overlap and exposure risk with fisheries because spatial overlap is a major driver of fishing capture susceptibility and previous shark ecological risk assessments (ERAs) assumed a homogenous shark density within species-range distributions3,4,5 or used coarse-scale modelled occurrence data, rather than more ecologically realistic risk estimates in heterogeneous habitats that were selected by sharks over time. Furthermore, our shark spatial exposure risk implicitly accounts for other susceptibility factors with equal or similar probabilities to those commonly used in shark ERAs3,5
    corecore