293 research outputs found

    The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter

    Get PDF
    The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 200

    A Measurement of the Correlation of Galaxy Surveys with CMB Lensing Convergence Maps from the South Pole Telescope

    Get PDF
    We compare cosmic microwave background lensing convergence maps derived from South Pole Telescope (SPT) data with galaxy survey data from the Blanco Cosmology Survey, WISE, and a new large Spitzer/IRAC field designed to overlap with the SPT survey. Using optical and infrared catalogs covering between 17 and 68 deg^2 of sky, we detect a correlation between the SPT convergence maps and each of the galaxy density maps at >4σ, with zero correlation robustly ruled out in all cases. The amplitude and shape of the cross-power spectra are in good agreement with theoretical expectations and the measured galaxy bias is consistent with previous work. The detections reported here utilize a small fraction of the full 2500 deg^2 SPT survey data and serve as both a proof of principle of the technique and an illustration of the potential of this emerging cosmological probe

    A Measurement of the Cosmic Microwave Background Damping Tail from the 2500-square-degree SPT-SZ survey

    Full text link
    We present a measurement of the cosmic microwave background (CMB) temperature power spectrum using data from the recently completed South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. This measurement is made from observations of 2540 deg2^2 of sky with arcminute resolution at 150 150\,GHz, and improves upon previous measurements using the SPT by tripling the sky area. We report CMB temperature anisotropy power over the multipole range 650<ℓ<3000650<\ell<3000. We fit the SPT bandpowers, combined with the seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) data, with a six-parameter LCDM cosmological model and find that the two datasets are consistent and well fit by the model. Adding SPT measurements significantly improves LCDM parameter constraints; in particular, the constraint on θs\theta_s tightens by a factor of 2.7. The impact of gravitational lensing is detected at 8.1 σ8.1\, \sigma, the most significant detection to date. This sensitivity of the SPT+WMAP7 data to lensing by large-scale structure at low redshifts allows us to constrain the mean curvature of the observable universe with CMB data alone to be Ωk=−0.003−0.018+0.014\Omega_k=-0.003^{+0.014}_{-0.018}. Using the SPT+WMAP7 data, we measure the spectral index of scalar fluctuations to be ns=0.9623±0.0097n_s=0.9623 \pm 0.0097 in the LCDM model, a 3.9 σ3.9\,\sigma preference for a scale-dependent spectrum with ns<1n_s<1. The SPT measurement of the CMB damping tail helps break the degeneracy that exists between the tensor-to-scalar ratio rr and nsn_s in large-scale CMB measurements, leading to an upper limit of r<0.18r<0.18 (95%,C.L.) in the LCDM+rr model. Adding low-redshift measurements of the Hubble constant (H0H_0) and the baryon acoustic oscillation (BAO) feature to the SPT+WMAP7 data leads to further improvements. The combination of SPT+WMAP7+H0H_0+BAO constrains ns=0.9538±0.0081n_s=0.9538 \pm 0.0081 in the LCDM model, a 5.7 σ5.7\,\sigma detection of ns<1n_s < 1, ... [abridged]Comment: 21 pages, 10 figures. Replaced with version accepted by ApJ. Data products are available at http://pole.uchicago.edu/public/data/story12

    Sunyaev-Zel'dovich Cluster Profiles Measured with the South Pole Telescope

    Full text link
    We present Sunyaev-Zel'dovich measurements of 15 massive X-ray selected galaxy clusters obtained with the South Pole Telescope. The Sunyaev-Zel'dovich (SZ) cluster signals are measured at 150 GHz, and concurrent 220 GHz data are used to reduce astrophysical contamination. Radial profiles are computed using a technique that takes into account the effects of the beams and filtering. In several clusters, significant SZ decrements are detected out to a substantial fraction of the virial radius. The profiles are fit to the beta model and to a generalized NFW pressure profile, and are scaled and stacked to probe their average behavior. We find model parameters that are consistent with previous studies: beta=0.86 and r_core/r_500 = 0.20 for the beta model, and (alpha, beta, gamma, c_500)=(1.0,5.5,0.5,1.0) for the generalized NFW model. Both models fit the SPT data comparably well, and both are consistent with the average SZ profile out to the virial radius. The integrated Compton-y parameter Y_SZ is computed for each cluster using both model-dependent and model-independent techniques, and the results are compared to X-ray estimates of cluster parameters. We find that Y_SZ scales with Y_X and gas mass with low scatter. Since these observables have been found to scale with total mass, our results point to a tight mass-observable relation for the SPT cluster survey.Comment: 21 pages, 24 figures, updated to published versio

    A Direct Measurement of the Linear Bias of Mid-infrared-selected Quasars at z ap 1 Using Cosmic Microwave Background Lensing

    Get PDF
    We measure the cross-power spectrum of the projected mass density as traced by the convergence of the cosmic microwave background lensing field from the South Pole Telescope (SPT) and a sample of Type 1 and 2 (unobscured and obscured) quasars at langzrang ~ 1 selected with the Wide-field Infrared Survey Explorer, over 2500 deg2. The cross-power spectrum is detected at ≈7σ, and we measure a linear bias b = 1.61 ± 0.22, consistent with clustering analyses. Using an independent lensing map, derived from Planck observations, to measure the cross-spectrum, we find excellent agreement with the SPT analysis. The bias of the combined sample of Type 1 and 2 quasars determined in this work is similar to that previously determined for Type 1 quasars alone; we conclude that obscured and unobscured quasars trace the matter field in a similar way. This result has implications for our understanding of quasar unification and evolution schemes.Peer reviewe

    A CMB lensing mass map and its correlation with the cosmic infrared background

    Full text link
    We use a temperature map of the cosmic microwave background (CMB) obtained using the South Pole Telescope at 150 GHz to construct a map of the gravitational convergence to z ~ 1100, revealing the fluctuations in the projected mass density. This map shows individual features that are significant at the ~ 4 sigma level, providing the first image of CMB lensing convergence. We cross-correlate this map with Herschel/SPIRE maps covering 90 square degrees at wavelengths of 500, 350, and 250 microns. We show that these submillimeter-wavelength (submm) maps are strongly correlated with the lensing convergence map, with detection significances in each of the three submm bands ranging from 6.7 to 8.8 sigma. We fit the measurement of the cross power spectrum assuming a simple constant bias model and infer bias factors of b=1.3-1.8, with a statistical uncertainty of 15%, depending on the assumed model for the redshift distribution of the dusty galaxies that are contributing to the Herschel/SPIRE maps.Comment: 5 pages, 3 figures, to be submitted to ApJ

    Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope

    Get PDF
    Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a non-zero correlation at 7.7 sigma significance. The correlation has an amplitude and scale-dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR

    A Measurement of the Cosmic Microwave Background Gravitational Lensing Potential from 100 Square Degrees of SPTpol Data

    Get PDF
    We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg2^2 of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between 100<L<250100< L <250. This is the highest signal-to-noise mass map made from the CMB to date and will be powerful in cross-correlation with other tracers of large-scale structure. We calculate the power spectrum of the lensing potential for each estimator, and we report the value of the MV power spectrum between 100<L<2000100< L <2000 as our primary result. We constrain the ratio of the spectrum to a fiducial Λ\LambdaCDM model to be AMV=0.92±0.14 (Stat.)±0.08 (Sys.)A_{\rm MV}=0.92 \pm 0.14 {\rm\, (Stat.)} \pm 0.08 {\rm\, (Sys.)}. Restricting ourselves to polarized data only, we find APOL=0.92±0.24 (Stat.)±0.11 (Sys.)A_{\rm POL}=0.92 \pm 0.24 {\rm\, (Stat.)} \pm 0.11 {\rm\, (Sys.)}. This measurement rejects the hypothesis of no lensing at 5.9σ5.9 \sigma using polarization data alone, and at 14σ14 \sigma using both temperature and polarization data.Comment: 16 pages, 8 figure
    • …
    corecore