25 research outputs found

    Detection of Platelet-Activating Antibodies Associated with Vaccine-Induced Thrombotic Thrombocytopenia by Flow Cytometry: An Italian Experience

    Get PDF
    Rare cases of thrombocytopenia and thrombosis after anti-COVID-19 adenovirus-associated mRNA vaccines (VITT) due to platelet-activating anti-platelet-factor 4 (PF4)/polyanion antibod-ies have been reported. VITT laboratory diagnosis, similarly to heparin-induced thrombocytope-nia (HIT) diagnosis, requires immunoassays for anti-PF4/polyanion antibodies identification, such as ELISA assays and platelet-activating functional tests, such as heparin-induced platelet activation test (HIPA), to confirm their pathogenicity. We compared the flow cytometry (FC) measurement of platelet p-selectin exposure to the gold standard functional test HIPA for diagno-sis confirmation in 13 patients with a clinical VITT syndrome (6M/7F; median age 56 (33–78)) who resulted positive to anti-PF4/polyanion antibodies ELISA assays (12/13). FC and HIPA sim-ilarly identified three different patterns: (1) a typical non-heparin-dependent VITT pattern (seven and six patients by FC and HIPA, respectively); (2) low/no platelet activation in patients under IvIg therapy (five out of five and two out of four patients by FC and HIPA, respectively); (3) a HIT pattern. Antibodies investigated by FC became negative after 7, 17, and 24 days of therapy in three patients. FC measurement of P-selectin exposure was as sensitive as HIPA but simpler to de-tect anti-PF4/polyanion antibodies in VITT patients. FC could reliably discriminate VITT from HIT, thus helping for the choice of the anticoagulant

    Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment

    No full text
    Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research.Biological significance Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted

    Age- and gender-related differences in LDL-cholesterol management in outpatients with type 2 diabetes mellitus

    Get PDF
    Background. Dyslipidemia contribute to the excess of coronary heart disease (CHD) risk observed in women with type 2 diabetes (T2DM). Low density lipoprotein-cholesterol (LDL-C) is the major target for CHD prevention, and T2DM women seem to reach LDL-C targets less frequently than men. Aim. To explore age-and gender-related differences in LDL-C management in a large sample of outpatients with T2DM. Results. Overall, 415.294 patients (45.3% women) from 236 diabetes centers in Italy were included. Women were older and more obese, with longer diabetes duration, higher total-cholesterol, LDL-C, and HDL-C serum levels compared to men (P < 0.0001). Lipid profile was monitored in similar to 75% of subjects, women being monitored less frequently than men, irrespective of age. More women did not reach the LDL-C target as compared to men, particularly in the subgroup treated with lipid-lowering medications. The between-genders gap in reaching LDL-C targets increased with age and diabetes duration, favouring men in all groups. Conclusions. LDL-C management is worst in women with T2DM, who are monitored and reach targets less frequently than T2DM men. Similarly to men, they do not receive medications despite high LDL-C. These gender discrepancies increase with age and diabetes duration, exposing older women to higher CHD risk

    Detection of Platelet-Activating Antibodies Associated with Vaccine-Induced Thrombotic Thrombocytopenia by Flow Cytometry: An Italian Experience

    No full text
    Rare cases of thrombocytopenia and thrombosis after anti-COVID-19 adenovirus-associated mRNA vaccines (VITT) due to platelet-activating anti-platelet-factor 4 (PF4)/polyanion antibodies have been reported. VITT laboratory diagnosis, similarly to heparin-induced thrombocytopenia (HIT) diagnosis, requires immunoassays for anti-PF4/polyanion antibodies identification, such as ELISA assays and platelet-activating functional tests, such as heparin-induced platelet activation test (HIPA), to confirm their pathogenicity. We compared the flow cytometry (FC) measurement of platelet p-selectin exposure to the gold standard functional test HIPA for diagnosis confirmation in 13 patients with a clinical VITT syndrome (6M/7F; median age 56 (33&ndash;78)) who resulted positive to anti-PF4/polyanion antibodies ELISA assays (12/13). FC and HIPA similarly identified three different patterns: (1) a typical non-heparin-dependent VITT pattern (seven and six patients by FC and HIPA, respectively); (2) low/no platelet activation in patients under IvIg therapy (five out of five and two out of four patients by FC and HIPA, respectively); (3) a HIT pattern. Antibodies investigated by FC became negative after 7, 17, and 24 days of therapy in three patients. FC measurement of P-selectin exposure was as sensitive as HIPA but simpler to detect anti-PF4/polyanion antibodies in VITT patients. FC could reliably discriminate VITT from HIT, thus helping for the choice of the anticoagulant

    Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment.

    No full text
    Space is a hostile environment characterized by high vacuum, extreme temperatures, meteoroids, space debris, ionospheric plasma, microgravity and space radiation, which all represent risks for human health. A deep understanding of the biological consequences of exposure to the space environment is required to design efficient countermeasures to minimize their negative impact on human health. Recently, proteomic approaches have received a significant amount of attention in the effort to further study microgravity-induced physiological changes. In this review, we summarize the current knowledge about the effects of microgravity on microorganisms (in particular Cupriavidus metallidurans CH34, Bacillus cereus and Rhodospirillum rubrum S1H), plants (whole plants, organs, and cell cultures), mammalian cells (endothelial cells, bone cells, chondrocytes, muscle cells, thyroid cancer cells, immune system cells) and animals (invertebrates, vertebrates and mammals). Herein, we describe their proteome's response to microgravity, focusing on proteomic discoveries and their future potential applications in space research. BIOLOGICAL SIGNIFICANCE: Space experiments and operational flight experience have identified detrimental effects on human health and performance because of exposure to weightlessness, even when currently available countermeasures are implemented. Many experimental tools and methods have been developed to study microgravity induced physiological changes. Recently, genomic and proteomic approaches have received a significant amount of attention. This review summarizes the recent research studies of the proteome response to microgravity inmicroorganisms, plants, mammalians cells and animals. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of all proteomes. Understanding gene and/or protein expression is the key to unlocking the mechanisms behind microgravity-induced problems and to finding effective countermeasures to spaceflight-induced alterations but also for the study of diseases on earth. Future perspectives are also highlighted

    Breast-specific gamma imaging: an added value in the diagnosis of breast cancer, a systematic review

    No full text
    Simple Summary Breast-specific gamma imaging represents an emergent instrument for breast cancer detection. We selected on Medline articles published from 1995 to 2022 that compare various imaging modalities with breast-specific gamma imaging. The aim of this paper was to assess if this imaging method is a more valuable choice in detecting breast malignant lesions compared to morphological counterparts such mammography, ultrasound, and magnetic resonance imaging in terms of specificity, sensibility and positive and negative predictive value. At the cost of a major radiology burden, breast-specific gamma imaging is more specific, with a sensibility comparable to magnetic resonance imaging and higher than ultrasonography and mammography. Purpose: Breast cancer is the most common solid tumor and the second highest cause of death in the United States. Detection and diagnosis of breast tumors includes various imaging modalities, such as mammography (MMG), ultrasound (US), and contrast-enhancement MRI. Breast-specific gamma imaging (BSGI) is an emerging tool, whereas morphological imaging has the disadvantage of a higher absorbed dose. Our aim was to assess if this imaging method is a more valuable choice in detecting breast malignant lesions compared to morphological counterparts. Methods: research on Medline from 1995 to June 2022 was conducted. Studies that compared at least one anatomical imaging modality with BSGI were screened and assessed through QUADAS2 for risk of bias and applicability concerns assessment. Sensitivity, specificity, positive and negative predictive value (PPV and NPV) were reported. Results: A total of 15 studies compared BSGI with MMG, US, and MRI. BSGI sensitivity was similar to MRI, but specificity was higher. Specificity was always higher than MMG and US. BSGI had higher PPV and NPV. When used for the evaluation of a suspected breast lesion, the overall sensitivity was better than the examined overall sensitivity when BSGI was excluded. Risk of bias and applicability concerns domain showed mainly low risk of bias. Conclusion: BSGI is a valuable imaging modality with similar sensitivity to MRI but higher specificity, although at the cost of higher radiation burden
    corecore