13 research outputs found

    CRESST Dark Matter Search with Cryogenic Calorimeters

    Get PDF
    Das CRESST Experiment im Gran Sasso Untergrundlabor sucht nach Dunkler Materie in Form von schwach wechselwirkenden massiven Teilchen (WIMPs) ueber elastische Streuung an Kernen. Die erste Phase von CRESST benutzte 262 g Saphir Kristalle als Absorber. Ein niedriger Untergrund, eine Langzeitstabilitaet des kryogenen Aufbaus, sowie eine niedrige Schwelle und eine hohe Sensitivitaet fuer leichte WIMPs wurden damit erreicht. In einer sehr stabilen Messung von 1.5 kg Tagen wurden ein Untergrund besser als 1 Ereignis/kg/Tag/keV ueber 20 keV und eine Schwelle von 580 eV erreicht. Saphir Detektoren sind besonders geeignet, um leichte WIMPs mit spin-abhaengiger Wechselwirkung zu messen. Die Ergebnisse verbessern existierende Limits in diesem Bereich. Die zweite Phase von CRESST benutzt szintillierende Kristalle als Absorber. In einem Szintillator wird nach einer Energiedeposition neben Phononen auch Licht erzeugt. Kernrueckstoesse erzeugen weniger Licht als voll ionisierende Wechselwirkungen. Die gleichzeitige Messung des Phononen- und Lichtsignals ermoeglicht eine Identifizierung der Wechselwirkung. Erste Messungen mit 300 g CaWO4 Detektoren wurden im Aufbau am Gran Sasso durchgefuehrt. Trotz einiger technischer Probleme war eine Charakterisierung der Detektoren moeglich, die das grosse Potential der Ereignisdiskriminierung aufzeigt

    Towards the FAIRification of Scanning Tunneling Microscopy Images

    Get PDF
    ABSTRACTIn this paper, we describe the data management practices and services developed for making FAIR compliant a scientific archive of Scanning Tunneling Microscopy (STM) images. As a first step, we extracted the instrument metadata of each image of the dataset to create a structured database. We then enriched these metadata with information on the structure and composition of the surface by means of a pipeline that leverages human annotation, machine learning techniques, and instrument metadata filtering. To visually explore both images and metadata, as well as to improve the accessibility and usability of the dataset, we developed “STM explorer” as a web service integrated within the Trieste Advanced Data services (TriDAS) website. On top of these data services and tools, we propose an implementation of the W3C PROV standard to describe provenance metadata of STM images

    Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning

    Get PDF
    Introduction: The excellent soft-tissue contrast of magnetic resonance imaging (MRI) is appealing for delineation of organs-at-risk (OARs) as it is required for radiation therapy planning (RTP). In the last decade there has been an increasing interest in using deep-learning (DL) techniques to shorten the labor-intensive manual work and increase reproducibility. This paper focuses on the automatic segmentation of 27 head-and-neck and 10 male pelvis OARs with deep-learning methods based on T2-weighted MR images.Method: The proposed method uses 2D U-Nets for localization and 3D U-Net for segmentation of the various structures. The models were trained using public and private datasets and evaluated on private datasets only.Results and discussion: Evaluation with ground-truth contours demonstrated that the proposed method can accurately segment the majority of OARs and indicated similar or superior performance to state-of-the-art models. Furthermore, the auto-contours were visually rated by clinicians using Likert score and on average, 81% of them was found clinically acceptable

    Competence Centre ICDI per Open Science, FAIR, ed EOSC - Mission, Strategia e piano d'azione

    Get PDF
    This document presents the mission and strategy of the Italian Competence Centre on Open Science, FAIR, and EOSC. The Competence Centre is an initiative born within the Italian Computing and Data Infrastructure (ICDI), a forum created by representatives of major Italian Research Infrastructures and e-Infrastructures, with the aim of promoting sinergies at the national level, and optimising the Italian participation to European and global challenges in this field, including the European Open Science Cloud (EOSC), the European Data Infrastructure (EDI) and HPC. This working paper depicts the mission and objectives of the ICDI Competence Centre, a network of experts with various skills and competences that are supporting the national stakeholders on topics related to Open Science, FAIR principles application and participation to the EOSC. The different actors and roles are described in the document as well as the activities and services offered, and the added value each stakeholder can find the in Competence Centre. The tools and services provided, in particular the concept for the portal, though which the Centre will connect to the national landscape and users, are also presented

    Seismic Hazard Assesment: Parametric Studies On Grid Infrastructures.

    No full text
    Seismic hazard assessment can be performed following a neo-deterministic approach (NDSHA), which allows to give a realistic description of the seismic ground motion due to an earthquake of given distance and magnitude. The approach is based on modelling techniques that have been developed from a detailed knowledge of both the seismic source process and the propagation of seismic waves. This permits us to define a set of earthquake scenarios and to simulate the associated synthetic signals without having to wait for a strong event to occur. NDSHA can be applied at the regional scale, computing seismograms at the nodes of a grid with the desired spacing, or at the local scale, taking into account the source characteristics, the path and local geological and geotechnical conditions. Synthetic signals can be produced in a short time and at a very low cost/benefit ratio. They can be used as seismic input in subsequent engineering analyses aimed at the computation of the full non-linear seismic response of the structure or simply the earthquake damaging potential. Massive parametric tests, to explore the influence not only of deterministic source parameters and structural models but also of random properties of the same source model, enable realistic estimate of seismic hazard and their uncertainty. This is particular true in those areas for which scarce (or no) historical or instrumental information is available. Here we describe the implementation of the seismological codes and the results of some parametric tests performed using the EU-India Grid infrastructure

    Comprehensive dose evaluation of a Deep Learning based synthetic Computed Tomography algorithm for pelvic Magnetic Resonance-only radiotherapy

    No full text
    BACKGROUND AND PURPOSE: Magnetic Resonance (MR)-only radiotherapy enables the use of MR without the uncertainty of MR-Computed Tomography (CT) registration. This requires a synthetic CT (sCT) for dose calculations, which can be facilitated by a novel Zero Echo Time (ZTE) sequence where bones are visible and images are acquired in 65 seconds. This study evaluated the dose calculation accuracy for pelvic sites of a ZTE-based Deep Learning sCT algorithm developed by GE Healthcare. MATERIALS AND METHODS: ZTE and CT images were acquired in 56 pelvic radiotherapy patients in the radiotherapy position. A 2D U-net convolutional neural network was trained using pairs of deformably registered CT and ZTE images from 36 patients. In the remaining 20 patients the dosimetric accuracy of the sCT was assessed using cylindrical dummy Planning Target Volumes (PTVs) positioned at four different central axial locations, as well as the clinical treatment plans (for prostate (n=10), rectum (n=4) and anus (n=6) cancers). The sCT was rigidly and deformably registered, the plan recalculated and the doses compared using mean differences and gamma analysis. RESULTS: Mean dose differences to the PTV D98% were ≤ 0.5% for all dummy PTVs and clinical plans (rigid registration). Mean gamma pass rates at 1%/1 mm were 98.0 ± 0.4% (rigid) and 100.0 ± 0.0% (deformable), 96.5 ± 0.8% and 99.8 ± 0.1%, and 95.4 ± 0.6% and 99.4 ± 0.4% for the clinical prostate, rectum and anus plans respectively. CONCLUSIONS: A ZTE-based sCT algorithm with high dose accuracy throughout the pelvis has been developed. This suggests the algorithm is sufficiently accurate for MR-only radiotherapy for all pelvic sites

    Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network

    No full text
    Objective:In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image. In this work, we aim to demonstrate a method to generate accurate synthetic CT (sCT) from an MR image to suit the radiation therapy (RT) treatment planning workflow. We show the feasibility of the method and make way for a broader clinical evaluation.Approach:We present a machine learning method for sCT generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. The misestimation of bone density in the radiation path could lead to unintended dose delivery to the target volume and results in suboptimal treatment outcome. We propose a loss function that favors a spatially sparse bone region in the image. We harness the ability of the multi-task network to produce correlated outputs as a framework to enable localization of region of interest (RoI) via segmentation, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task.Main results:We have included 54 brain patient images in this study and tested the sCT images against reference CT on a subset of 20 cases. A pilot dose evaluation was performed on 9 of the 20 test cases to demonstrate the viability of the generated sCT in RT planning. The average quantitative metrics produced by the proposed method over the test set were-(a) mean absolute error (MAE) of 70 ± 8.6 HU; (b) peak signal-to-noise ratio (PSNR) of 29.4 ± 2.8 dB; structural similarity metric (SSIM) of 0.95 ± 0.02; and (d) Dice coefficient of the body region of 0.984 ± 0.Significance. We demonstrate that the proposed method generates sCT images that resemble visual characteristics of a real CT image and has a quantitative accuracy that suits RT dose planning application. We compare the dose calculation from the proposed sCT and the real CT in a radiation therapy treatment planning setup and show that sCT based planning falls within 0.5% target dose error. The method presented here with an initial dose evaluation makes an encouraging precursor to a broader clinical evaluation of sCT based RT planning on different anatomical regions.</p
    corecore