12 research outputs found

    Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence.

    Get PDF
    This paper considers the problem of power minimization based robust orthogonal frequency division multiplexing (OFDM) radar waveform design, in which the radar coexists with a communication system in the same frequency band. Recognizing that the precise characteristics of target spectra are impossible to capture in practice, it is assumed that the target spectra lie in uncertainty sets bounded by known upper and lower bounds. Based on this uncertainty model, three different power minimization based robust radar waveform design criteria are proposed to minimize the worst-case radar transmitted power by optimizing the OFDM radar waveform, which are constrained by a specified mutual information (MI) requirement for target characterization and a minimum capacity threshold for communication system. These criteria differ in the way the communication signals scattered off the target are considered: (i) as useful energy, (ii) as interference or (iii) ignored altogether at the radar receiver. Numerical simulations demonstrate that the radar transmitted power can be efficiently reduced by exploiting the communication signals scattered off the target at the radar receiver. It is also shown that the robust waveforms bound the worst-case power-saving performance of radar system for any target spectra in the uncertainty sets

    Estimation of sensitivity, specificity, predictive values and likelihood ratios by Rapid-Heat LAMPellet method against standard parasitological test (microscopy) for current study for identifying <i>Schistosoma haematobium</i> infection in patients´ urine samples.

    No full text
    <p>PPV, Positive Predictive Value</p><p>NPV, Negative Predictive Value</p><p>Estimation of sensitivity, specificity, predictive values and likelihood ratios by Rapid-Heat LAMPellet method against standard parasitological test (microscopy) for current study for identifying <i>Schistosoma haematobium</i> infection in patients´ urine samples.</p

    Lamp primer set targeting the selected sequence (GenBank Accession No. AJ223838) for ribosomal intergenic spacer <i>S</i>. <i>haematobium</i> DNA region amplification.

    No full text
    <p>(A) The location of the LAMP primers within the selected sequence is shown. Arrows indicate the direction of extension. (B). Sequence of LAMP primers: F3, forward outer primer; B3, reverse outer primer; FIP, forward inner primer (comprising F1c and F2 sequences); BIP, reverse inner primer (comprising B1c and B2 sequences); LF (loop forward primer); LB (loop backward primer).</p

    PCR verification, detection limit and specificity using outer primers F3 and B3.

    No full text
    <p>(A) PCR verification of expected 199 bp target length amplicon. Lane M, 50 bp DNA ladder (Molecular weight marker XIII, Roche); lane Sh, <i>S</i>. <i>haematobium</i> DNA (1 ng); lane N, negative control (no DNA template). (B) Detection limit of PCR. Lane M, 50 bp DNA ladder (Molecular weight marker XIII, Roche); lane Sh: <i>S</i>. <i>haematobium</i> DNA (1 ng); lanes 10<sup>−1</sup>–10<sup>−9</sup>: 10-fold serially dilutions of <i>S</i>. <i>haematobium</i> DNA; lane N, negative control (no DNA template). (C) Specificity of PCR. Lane M, 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes Sh, Sm, Sj, Sb, Fh, Dd, Hd, Cd, Ll, Bp, As, Sv, Ts, Tt, Eg, Gi, Eh, Cp, Po, Pv, Pm, <i>S</i>. <i>haematobium</i>, <i>S</i>. <i>mansoni</i>, <i>S</i>. <i>japonicum</i>, <i>S</i>. <i>bovis</i>, <i>Fasciola hepatica</i>, <i>Dicrocoelium dendriticum</i>, <i>Hymenolepis diminuta</i>, <i>Calicophoron daubneyi</i>, <i>Loa loa</i>, <i>Brugia pahangi</i>, <i>Anisakis simplex</i>, <i>Strongyloides venezuelensis</i>, <i>Trichinella spiralis</i>, <i>Taenia taeniformis</i>, <i>Echinococcus granulosus</i>, <i>Giardia intestinalis</i>, <i>Entamoeba histolytica</i>, <i>Cryptosporidium parvum</i>, <i>Plasmodium ovale</i>, <i>P</i>. <i>vivax</i> and <i>P</i>. <i>malariae</i> DNA samples (1 ng/each), respectively; lane N, negative control (no DNA template).</p

    Setting up LAMP assay.

    No full text
    <p>(A) LAMP amplification results obtained at different incubation times (30, 50 and 60 min) tested in a heating block by the addition of SYBR Green I (up) or by visualization on agarose gel (down). Lane M, 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes 30, 50, 60, amplification results of <i>S</i>. <i>haematobium</i> DNA (1 ng) for 30, 50 and 60 minutes of incubation time, respectively. (B) Specificity of the LAMP assay for <i>S</i>. <i>haematobium</i>. A ladder of multiple bands of different sizes could be only observed in <i>S</i>. <i>haematobium</i> DNA sample. Lane M, 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes Sh, Sm, Sj, Sb, Fh, Dd, Hd, Cd, Ll, Bp, As, Sv, Ts, Tt, Eg, Gi, Eh, Cp, Po, Pv and Pm, <i>S</i>. <i>haematobium</i>, <i>S</i>. <i>mansoni</i>, <i>S</i>. <i>japonicum</i>, <i>S</i>. <i>bovis</i>, <i>Fasciola hepatica</i>, <i>Dicrocoelium dendriticum</i>, <i>Hymenolepis diminuta</i>, <i>Calicophoron daubneyi</i>, <i>Loa loa</i>, <i>Brugia pahangi</i>, <i>Anisakis simplex</i>, <i>Strongyloides venezuelensis</i>, <i>Trichinella spiralis</i>, <i>Taenia taeniformis</i>, <i>Echinococcus granulosus</i>, <i>Giardia intestinalis</i>, <i>Entamoeba histolytica</i>, <i>Cryptosporidium parvum</i>, <i>Plasmodium ovale</i>, <i>P</i>. <i>vivax</i> and <i>P</i>. <i>malariae</i> DNA samples (1 ng/each), respectively; lane N, negative control (no DNA template). (C) Sensitivity assessment performed with LAMP at 63°C for 50 min using serial dilutions of <i>S</i>. <i>haematobium</i> genomic DNA. Lane M: 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes Sh: genomic DNA from <i>S</i>. <i>haematobium</i> (1 ng); lanes 10<sup>−1</sup>–10<sup>−9</sup>: 10-fold serially dilutions; lane N: negative controls (no DNA template).</p

    Examination of aliquots of urinary sediment (pellets) from <i>S</i>. <i>haematobium</i>-positive patients´ urine samples by LAMP.

    No full text
    <p>Figure shows the LAMP results (up, by color change; down, by agarose electrophoresis) when using aliquots of 100 μL of pellets to obtain DNA as template by using (A) the i-genomic Urine DNA Extraction Mini Kit (Intron Biotechnology, UK); (B) the heating NaOH-SDS method and (C) the rapid heating method-the rapid-heat LAMPellet method-. Lanes M: 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes Sh: genomic DNA from <i>S</i>. <i>haematobium</i> (1 ng); lanes 1–18: <i>S</i>. <i>haematobium</i>-positive samples; lanes N: negative controls (no DNA template).</p

    Sensitivity of the LAMP assay in simulated human urine samples artificially contaminated with DNA from <i>S</i>. <i>haematobium</i>.

    No full text
    <p>(A) Sensitivity assessment of LAMP when performing the DNA extraction with the i-genomic Urine DNA Extraction Mini Kit (Intron Biotechnology, UK) from serial dilutions of <i>S</i>. <i>haematobium</i> genomic DNA. (B) Sensitivity assessment of LAMP when performing the DNA extraction with a simple heating method from serial dilutions of <i>S</i>. <i>haematobium</i> genomic DNA. Lanes M: 50 bp DNA ladder (Molecular weight marker XIII, Roche); lanes Sh: genomic DNA from <i>S</i>. <i>haematobium</i> (1 ng); lanes 10<sup>−1</sup>–10<sup>−11</sup>: 10-fold serially dilutions; lanes N: negative controls (no DNA template).</p
    corecore