1,824 research outputs found

    Plausible fluorescent Ly-alpha emitters around the z=3.1 QSO0420-388

    Full text link
    We report the results of a survey for fluorescent Ly-alpha emission carried out in the field surrounding the z=3.1 quasar QSO0420-388 using the FORS2 instrument on the VLT. We first review the properties expected for fluorescent Ly-alpha emitters, compared with those of other non-fluorescent Ly-alpha emitters. Our observational search detected 13 Ly-alpha sources sparsely sampling a volume of ~14000 comoving Mpc^3 around the quasar. The properties of these in terms of i) the line equivalent width, ii) the line profile and iii) the value of the surface brightness related to the distance from the quasar, all suggest that several of these may be plausibly fluorescent. Moreover, their number is in good agreement with the expectation from theoretical models. One of the best candidates for fluorescence is sufficiently far behind QSO0420-388 that it would imply that the quasar has been active for (at least) ~60 Myrs. Further studies on such objects will give information about proto-galactic clouds and on the radiative history (and beaming) of the high-redshift quasars.Comment: 10 pages, 4 figures.Update to match the version published on ApJ 657, 135, 2007 March

    Recombinant factorVIII Fc fusion protein for the prevention and treatment of bleeding in children with severe hemophilia A

    Get PDF
    This work was supported by funding from Biogen, including funding for the editorial and writing support in the the development of this paper

    Control of bulk superconductivity in a BCS superconductor by surface charge doping via electrochemical gating

    Get PDF
    The electrochemical gating technique is a powerful tool to tune the surface conduction properties of various materials by means of pure charge doping, but its efficiency is thought to be hampered in materials with a good electronic screening. We show that, if applied to a metallic superconductor (NbN thin films), this approach allows observing reversible enhancements or suppressions of the bulk superconducting transition temperature, which vary with the thickness of the films. These results are interpreted in terms of proximity effect, and indicate that the effective screening length depends on the induced charge density, becoming much larger than that predicted by standard screening theory at very high electric fields

    Universality class for bootstrap percolation with m=3m=3 on the cubic lattice

    Full text link
    We study the m=3m=3 bootstrap percolation model on a cubic lattice, using Monte Carlo simulation and finite-size scaling techniques. In bootstrap percolation, sites on a lattice are considered occupied (present) or vacant (absent) with probability pp or 1−p1-p, respectively. Occupied sites with less than mm occupied first-neighbours are then rendered unoccupied; this culling process is repeated until a stable configuration is reached. We evaluate the percolation critical probability, pcp_c, and both scaling powers, ypy_p and yhy_h, and, contrarily to previous calculations, our results indicate that the model belongs to the same universality class as usual percolation (i.e., m=0m=0). The critical spanning probability, R(pc)R(p_c), is also numerically studied, for systems with linear sizes ranging from L=32 up to L=480: the value we found, R(pc)=0.270±0.005R(p_c)=0.270 \pm 0.005, is the same as for usual percolation with free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.

    Spiraling Solitons: a Continuum Model for Dynamical Phyllotaxis and Beyond

    Full text link
    A novel, protean, topological soliton has recently been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of phyllotaxis. Here we present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as locked speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge transport. The treatment is general and should apply to other spiraling systems. Unlike e.g. Sine-Gornon-like systems, our solitons can exist between non-degenerate structure, imply a power flow through the system, dynamics of the domains it separates; we also predict pulses, both static and dynamic. Applications include charge transport in Wigner Crystals on nanotubes or A- to B-DNA transitions.Comment: 8 Pages, 6 Figures, Phys Rev E in pres

    Physics of Trans-Planckian Gravity

    Full text link
    We study the field theoretical description of a generic theory of gravity flowing to Einstein General Relativity in IR. We prove that, if ghost-free, in the weakly coupled regime such a theory can never become weaker than General Relativity. Using this fact, as a byproduct, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.Comment: 23 pages, 4 figures, v2: Paper reorganized to improve clarity; additional explanations and references added; version accepted for publication in Phys. Rev.

    Thermomechanics of DNA

    Full text link
    A theory for thermomechanical behavior of homogeneous DNA at thermal equilibrium predicts critical temperatures for denaturation under torque and stretch, phase diagrams for stable B--DNA, supercoiling, optimally stable torque, and the overstretching transition as force-induced DNA melting. Agreement with available single molecule manipulation experiments is excellent.Comment: 4 pages, 5 figures. Lette

    Two-dimensional Quantum Black Holes, Branes in BTZ and Holography

    Get PDF
    We solve semiclassical Einstein equations in two dimensions with a massive source and we find a static, thermodynamically stable, quantum black hole solution in the Hartle-Hawking vacuum state. We then study the black hole geometry generated by a boundary mass sitting on a non-zero tension 1-brane embedded in a three-dimensional BTZ black hole. We show that the two geometries coincide and we extract, using holographic relations, information about the CFT living on the 1-brane. Finally, we show that the quantum black hole has the same temperature of the bulk BTZ, as expected from the holographic principle.Comment: 10 pages, 2 figures, RevTex, ``point particle of mass \mu '' changed with ``massive boundary source'' for better clarity. Action in (50) written in Z_2 symmetric form. Appendix clarified. Minor corrections and references added. Version accepted for pubblication in PRD15 (2006

    Country-level pandemic risk and preparedness classification based on COVID-19 data: A machine learning approach

    Get PDF
    In this work we present a three-stage Machine Learning strategy to country-level risk classification based on countries that are reporting COVID-19 information. A K% binning discretisation (K = 25) is used to create four risk groups of countries based on the risk of transmission (coronavirus cases per million population), risk of mortality (coronavirus deaths per million population), and risk of inability to test (coronavirus tests per million population). The four risk groups produced by K% binning are labelled as ‘low’, ‘medium-low’, ‘medium-high’, and ‘high’. Coronavirus-related data are then removed and the attributes for prediction of the three types of risk are given as the geopolitical and demographic data describing each country. Thus, the calculation of class label is based on coronavirus data but the input attributes are country-level information regardless of coronavirus data. The three four-class classification problems are then explored and benchmarked through leave-one-country-out cross validation to find the strongest model, producing a Stack of Gradient Boosting and Decision Tree algorithms for risk of transmission, a Stack of Support Vector Machine and Extra Trees for risk of mortality, and a Gradient Boosting algorithm for the risk of inability to test. It is noted that high risk for inability to test is often coupled with low risks for transmission and mortality, therefore the risk of inability to test should be interpreted first, before consideration is given to the predicted transmission and mortality risks. Finally, the approach is applied to more recent risk levels to data from September 2020 and weaker results are noted due to the growth of international collaboration detracting useful knowledge from country-level attributes which suggests that similar machine learning approaches are more useful prior to situations later unfolding
    • …
    corecore