78 research outputs found
The Benefit of Sleeve Gastrectomy in Obese Adolescents on Nonalcoholic Steatohepatitis and Hepatic Fibrosis
Objective To determine whether bariatric surgery is effective for the treatment of nonalcoholic steatohepatitis (NASH) in adolescence, we compared the efficacy of laparoscopic sleeve gastrectomy (LSG) with that of lifestyle intervention (nonsurgical weight loss [NSWL]) for NASH reversal in obese adolescents. Study design Obese (body mass index ≥ 35 kg/m2) adolescents (13-17 years of age) with biopsy-proven NAFLD underwent LSG, lifestyle intervention plus intragastric weight loss devices (IGWLD), or only NSWL. At baseline and 1 year after treatment, patients underwent clinical and psychosocial evaluation, blood tests, liver biopsy, polysomnography, and 24-hour ambulatory blood pressure estimation. Results Twenty patients (21%) underwent LSG, 20 (21%) underwent IGWLD, and 53 (58%) received lifestyle intervention alone (NSWL). One year after treatment, patients who underwent LSG lost 21.5% of their baseline body weight, whereas patients who underwent IGWLD lost 3.4%, and patients who underwent NSWL increase 1.7%. In patients who underwent LSG, NASH reverted completely in all patients and hepatic fibrosis stage 2 disappeared in 18 patients (90%). After IGWLD, NASH reverted in 6 patients (24%) and fibrosis in 7 (37%). Patients who received the NSWL intervention did not improve significantly. Hypertension resolved in all patients who underwent LSG with preoperative hypertension (12/12) versus 50% (4/8) of the patients who underwent IGWLD (P = .02). The cohort-specific changes in impaired glucose metabolism were similar: 100% (9/9) of affected patients who underwent LSG versus 50% (1/2) of patients who underwent IGWLD (P = .02). LSG was also more affective in resolving dyslipidemia (55% [7/12] vs 26% [10/19]; P = .05) and sleep apnea (78% [2/9] vs 30% [11/20]; P = .001). Conclusion LSG was more effective than lifestyle intervention, even when combined with intragastric devices, for reducing NASH and liver fibrosis in obese adolescents after 1 year of treatment
Altered gut–liver axis and hepatic adiponectin expression in OSAS: novel mediators of liver injury in paediatric non-alcoholic fatty liver
BackgroundMechanism(s) connecting obstructive sleep apnoea syndrome (OSAS) to liver injury in paediatric non-alcoholic fatty liver disease (NAFLD) are unknown. We hypothesised alterations in gut–liver axis and in the pool and phenotype of hepatic progenitor cells (HPCs) may be involved in OSAS-associated liver injury in NAFLD.MethodsEighty biopsy-proven NAFLD children (age, mean±SD, 11.4±2.0 years, 56% males, body mass indexz-score 1.95±0.57) underwent a clinical–biochemical assessment, with measurement of insulin sensitivity, plasma cytokines, lipopolysaccharide (LPS), an intestinal permeability test and a standard polysomnography. Hepatic toll-like receptor (TLR)-4 expression by liver-resident cells and overall number and expression of resistin and adiponectin by HPCs were assessed by immunofluorescence and immunohistochemistry. OSAS was defined by an apnoea/hypopnoea index ≥1.ResultsOSAS was characterised by an increased intestinal permeability and endotoxemia, coupled with TLR-4 upregulation in hepatocytes, Kupffer and hepatic stellate cells (HSCs) and by an expansion of an adiponectin-deficient HPC pool, key features of steatohepatitis and fibrosis.The duration of haemoglobin desaturation (SaO2<90%) independently predicted intestinal permeability (β: 0.396; p=0.026), plasma LPS (β: 0.358; p=0.008) and TLR-4 expression by hepatocytes (β: 0.332; p=0.009), Kupffer cells (β: 0.357; p=0.006) and HSCs (β:0.445; p=0.002).SaO2<90% predicted also HPC number (β: 0.471; p=0.001) and impaired adiponectin expression by HPC pool (β: −0.532; p=0.0009).These relationships were observed in obese and non-obese children.ConclusionsIn paediatric NAFLD, OSAS is associated with increased endotoxemia coupled with impaired gut barrier function, with increased TLR-4-mediated hepatic susceptibility to endotoxemia and with an expansion of an adiponectin-deficient HPC pool. These alterations may represent a novel pathogenic link and a potential therapeutic target for OSAS-associated liver injury in NAFLD
LPS-induced TNF-α factor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease
Lipopolysaccharide (LPS) is currently considered one of the major players in non-alcoholic fatty liver disease (NAFLD) pathogenesis and progression. Here, we aim to investigate the possible role of LPS-induced TNF-α factor (LITAF) in inducing a pro-inflammatory and pro-fibrogenic phenotype of non-alcoholic steatohepatitis (NASH).We found that children with NAFLD displayed, in different liver-resident cells, an increased expression of LITAF which correlated with histological traits of hepatic inflammation and fibrosis. Total and nuclear LITAF expression increased in mouse and human hepatic stellate cells (HSCs). Moreover, LPS induced LITAF-dependent transcription of IL-1β, IL-6 and TNF-α in the clonal myofibroblastic HSC LX-2 cell line, and this effect was hampered by LITAF silencing. We showed, for the first time in HSCs, that LITAF recruitment to these cytokine promoters is LPS dependent. However, preventing LITAF nuclear translocation by p38MAPK inhibitor, the expression of IL-6 and TNF-α was significantly reduced with the aid of p65NF-ĸB, while IL-1β transcription exclusively required LITAF expression/activity. Finally, IL-1β levels in plasma mirrored those in the liver and correlated with LPS levels and LITAF-positive HSCs in children with NASH.In conclusion, a more severe histological profile in paediatric NAFLD is associated with LITAF over-expression in HSCs, which in turn correlates with hepatic and circulating IL-1β levels outlining a panel of potential biomarkers of NASH-related liver damage. The in vitro study highlights the role of LITAF as a key regulator of the LPS-induced pro-inflammatory pattern in HSCs and suggests p38MAPK inhibitors as a possible therapeutic approach against hepatic inflammation in NASH
Association between Serum Atypical Fibroblast Growth Factors 21 and 19 and Pediatric Nonalcoholic Fatty Liver Disease
Atypical fibroblast growth factors (FGF) 21 and 19 play a central role in energy metabolism through the mediation of Klotho coreceptor. Contradictory findings are available about the association of FGF21 and FGF19 with nonalcoholic fatty liver disease (NAFLD) in humans. We investigated the association of serum FGF21, FGF19 and liver Klotho coreceptor with non-alcoholic steatohepatitis (NASH) and fibrosis in children with NAFLD. Serum FGF21 and FGF19 were measured in 84 children with biopsy-proven NAFLD and 23 controls (CTRL). The hepatic expression of Klotho coreceptor was measured in 7 CTRL, 9 patients with NASH (NASH+) and 11 patients without NASH (NASH-). FGF21 and FGF19 showed a tendency to decrease from CTRL (median FGF21 = 196 pg/mL; median FGF19 = 201 pg/mL) to NASH- (FGF21 = 89 pg/mL; FGF19 = 81 pg/mL) to NASH+ patients (FGF21 = 54 pg/mL; FGF19 = 41 pg/mL) (p<0.001 for all comparisons) and were inversely associated with the probability of NASH and fibrosis in children with NAFLD. The hepatic expression of Klotho coreceptor was inversely associated with NASH (R2 = 0.87, p<0.0001) and directly associated with serum FGF21 (R2 = 0.57, p<0.0001) and FGF19 (R2 = 0.67, p<0.0001). In conclusion, serum FGF19 and FGF21 and hepatic Klotho expression are inversely associated with hepatic damage in children with NAFLD and these findings may have important implications for understanding the mechanisms of NAFLD progression. © 2013 Alisi et al
Macrophage Activation in Pediatric Nonalcoholic Fatty Liver Disease (NAFLD) Correlates with Hepatic Progenitor Cell Response via Wnt3a Pathway
Non-alcoholic fatty liver disease is one of the most important causes of liver-related morbidity in children. In non-alcoholic fatty liver disease, the activation of liver resident macrophage pool is a central event in the progression of liver injury. The aims of the present study were to evaluate the polarization of liver macrophages and the possible role of Wnt3a production by macrophages in hepatic progenitor cell response in the progression of pediatric non-alcoholic fatty liver disease. 32 children with biopsy-proven non-alcoholic fatty liver disease were included. 20 out of 32 patients were treated with docosahexaenoic acid for 18 months and biopsies at the baseline and after 18 months were included. Hepatic progenitor cell activation, macrophage subsets and Wnt/β-catenin pathway were evaluated by immunohistochemistry and immunofluorescence. Our results indicated that in pediatric non-alcoholic fatty liver disease, pro-inflammatory macrophages were the predominant subset. Macrophage polarization was correlated with Non-alcoholic fatty liver disease Activity Score, ductular reaction, and portal fibrosis; docosahexaenoic acid treatment determined a macrophage polarization towards an anti-inflammatory phenotype in correlation with the reduction of serum inflammatory cytokines, with increased macrophage apoptosis, and with the up-regulation of macrophage Wnt3a expression; macrophage Wnt3a expression was correlated with β-catenin phosphorylation in hepatic progenitor cells and signs of commitment towards hepatocyte fate. In conclusion, macrophage polarization seems to have a key role in the progression of pediatric non-alcoholic fatty liver disease; the modulation of macrophage polarization could drive hepatic progenitor cell response by Wnt3a production
Interaction between SNAI2 and MYOD enhances oncogenesis and suppresses differentiation in Fusion Negative Rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is an aggressive pediatric malignancy of the muscle, that includes Fusion Positive (FP)-RMS harboring PAX3/7-FOXO1 and Fusion Negative (FN)-RMS commonly with RAS pathway mutations. RMS express myogenic master transcription factors MYOD and MYOG yet are unable to terminally differentiate. Here, we report that SNAI2 is highly expressed in FN-RMS, is oncogenic, blocks myogenic differentiation, and promotes growth. MYOD activates SNAI2 transcription via super enhancers with striped 3D contact architecture. Genome wide chromatin binding analysis demonstrates that SNAI2 preferentially binds enhancer elements and competes with MYOD at a subset of myogenic enhancers required for terminal differentiation. SNAI2 also suppresses expression of a muscle differentiation program modulated by MYOG, MEF2, and CDKN1A. Further, RAS/MEK-signaling modulates SNAI2 levels and binding to chromatin, suggesting that the differentiation blockade by oncogenic RAS is mediated in part by SNAI2. Thus, an interplay between SNAI2, MYOD, and RAS prevents myogenic differentiation and promotes tumorigenesis. Rhabdomyosarcomas are tumours blocked in myogenic differentiation, which despite the expression of master muscle regulatory factors, including MYOD, are unable to differentiate. Here, the authors show that SNAI2 is upregulated by MYOD through super enhancers, binds to MYOD target enhancers, and arrests differentiation
MYOD-SKP2 axis boosts tumorigenesis in fusion negative rhabdomyosarcoma by preventing differentiation through p57 targeting
Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27 and p57, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS
AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity
Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway(1,2). Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis
The Number of Liver Galectin-3 Positive Cells Is Dually Correlated with NAFLD Severity in Children
Non-alcoholic fatty liver disease (NAFLD) is a complex disease ranging from steatosis to non-alcoholic steatohepatitis (NASH). Galectin-3 (Gal-3), which is a β-galactoside binding protein, has been associated with liver fibrosis, but its role in NAFLD remains elusive. We investigated the expression of Gal-3 in liver resident cells and its potential association with liver damage in 40 children with biopsy-proven NAFLD. We found that several liver cells expressed Gal-3. The number of total Gal-3 positive cells decreased with the severity of disease and the cells were correlated with the presence of steatosis and the diagnosis of NASH. CD68 macrophages expressed Gal-3 but the number CD68/Gal-3 positive cells was significantly reduced in patients diagnosed with steatosis and NASH. Triple CD68/CD206/Gal-3, which represented the subpopulation of M2 macrophages, were mainly present in patients without NASH, and clearly reduced in patients with steatosis and NASH. On the contrary, the number of α-smooth muscle actin (SMA)/Gal-3 positive cells increased with the severity of fibrosis in children with NAFLD. Our data demonstrated that the number of Gal-3 positive cells was associated with tissue damage in different ways, which suggests a dual role of this protein in the pathogenesis of pediatric NAFLD, even if the role of Gal-3 deserves further studies
- …