4 research outputs found

    Inferring the effective thickness of polyelectrolytes from stretching measurements at various ionic strengths: applications to DNA and RNA

    Full text link
    By resorting to the thick-chain model we discuss how the stretching response of a polymer is influenced by the self-avoidance entailed by its finite thickness. The characterization of the force versus extension curve for a thick chain is carried out through extensive stochastic simulations. The computational results are captured by an analytic expression that is used to fit experimental stretching measurements carried out on DNA and single-stranded RNA (poly-U) in various solutions. This strategy allows us to infer the apparent diameter of two biologically-relevant polyelectrolytes, namely DNA and poly-U, for different ionic strengths. Due to the very different degree of flexibility of the two molecules, the results provide insight into how the apparent diameter is influenced by the interplay between the (solution-dependent) Debye screening length and the polymers' ``bare'' thickness. For DNA, the electrostatic contribution to the effective radius, Δ\Delta, is found to be about 5 times larger than the Debye screening length, consistently with previous theoretical predictions for highly-charged stiff rods. For the more flexible poly-U chains the electrostatic contribution to Δ\Delta is found to be significantly smaller than the Debye screening length.Comment: iopart, 14 pages, 13 figures, to appear in J. Phys.: Condens. Matte

    Inferring the diameter of a biopolymer from its stretching response

    Get PDF
    We investigate the stretching response of a thick polymer model by means of extensive stochastic simulations. The computational results are synthesized in an analytic expression that characterizes how the force versus elongation curve depends on the polymer structural parameters: its thickness and granularity (spacing of the monomers). The expression is used to analyze experimental data for the stretching of various different types of biopolymers: polypeptides, polysaccharides, and nucleic acids. Besides recovering elastic parameters (such as the persistence length) that are consistent with those obtained from standard entropic models, the approach allows us to extract viable estimates for the polymers diameter and granularity. This shows that the basic structural polymer features have such a profound impact on the elastic behavior that they can be recovered with the sole input of stretching measurements

    Comparative FEM-based Analysis of Multiphase Induction Motor

    No full text
    This paper presents a comparative study of multiphase induction motor, which has alternately three-, five- and six-phase stator winding. The machine has been designed particularly for this purpose and has individual ring coils placed in each stator slot. The study consists in FEM analyses and mainly looks for the particularities of magnetic quantities such as air-gap flux density and electromagnetic torque
    corecore