11 research outputs found

    Aether Unleashed

    Get PDF
    We follow a low-energy effective theory approach to identify the general class of theories that describes a vector field (of unconstrained norm) coupled to gravity. The resulting set may be regarded as a generalization of the conventional vector-tensor theories, and as a high-momentum completion of aether models. We study the conditions that a viable cosmology, Newtonian limit and absence of classical and quantum instabilities impose on the parameters of our class of models, and compare these constraints with those derived in previously studied and related cases. The most stringent conditions arise from the quantum stability of the theory, which allows dynamical cosmological solutions only for a non-Maxwellian kinetic term. The gravitational constant in the Newtonian limit turns to be scale dependent, suggesting connections to dark matter and degravitation. This class of theories has a very rich gravitational phenomenology, and offers an ample but simple testing ground to study modifications of gravity and their cosmological implications.Comment: 41 pages, 1 figure and 4 tables. v2: Minor changes and added references, matches version accepted for publicatio

    Preheating in Derivatively-Coupled Inflation Models

    Get PDF
    We study preheating in theories where the inflaton couples derivatively to scalar and gauge fields. Such couplings may dominate in natural models of inflation, in which the flatness of the inflaton potential is related to an approximate shift symmetry of the inflaton. We compare our results with previously studied models with non-derivative couplings. For sufficiently heavy scalar matter, parametric resonance is ineffective in reheating the universe, because the couplings of the inflaton to matter are very weak. If scalar matter fields are light, derivative couplings lead to a mild long-wavelength instability that drives matter fields to non-zero expectation values. In this case however, long-wavelength fluctuations of the light scalar are produced during inflation, leading to a host of cosmological problems. In contrast, axion-like couplings of the inflaton to a gauge field do not lead to production of long-wavelength fluctuations during inflation. However, again because of the weakness of the couplings to the inflaton, parametric resonance is not effective in producing gauge field quanta.Comment: 10 pages, 9 figure

    Where does Cosmological Perturbation Theory Break Down?

    Get PDF
    We apply the effective field theory approach to the coupled metric-inflaton system, in order to investigate the impact of higher dimension operators on the spectrum of scalar and tensor perturbations in the short-wavelength regime. In both cases, effective corrections at tree-level become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length below which conventional cosmological perturbation theory does not apply is likely to be much smaller than the Planck length. This has implications for the observability of "trans-Planckian" effects in the spectrum of primordial perturbations.Comment: 25 pages, uses FeynM

    Do Cosmological Perturbations Have Zero Mean?

    Get PDF
    A central assumption in our analysis of cosmic structure is that cosmological perturbations have zero ensemble mean. This property is one of the consequences of statistically homogeneity, the invariance of correlation functions under spatial translations. In this article we explore whether cosmological perturbations indeed have zero mean, and thus test one aspect of statistical homogeneity. We carry out a classical test of the zero mean hypothesis against a class of alternatives in which perturbations have non-vanishing means, but homogeneous and isotropic covariances. Apart from Gaussianity, our test does not make any additional assumptions about the nature of the perturbations and is thus rather generic and model-independent. The test statistic we employ is essentially Student's t statistic, applied to appropriately masked, foreground-cleaned cosmic microwave background anisotropy maps produced by the WMAP mission. We find evidence for a non-zero mean in a particular range of multipoles, but the evidence against the zero mean hypothesis goes away when we correct for multiple testing. We also place constraints on the mean of the temperature multipoles as a function of angular scale. On angular scales smaller than four degrees, a non-zero mean has to be at least an order of magnitude smaller than the standard deviation of the temperature anisotropies.Comment: 31 pages, 4 tables, 6 figure

    Effective Theory Approach to the Spontaneous Breakdown of Lorentz Invariance

    Get PDF
    We generalize the coset construction of Callan, Coleman, Wess and Zumino to theories in which the Lorentz group is spontaneously broken down to one of its subgroups. This allows us to write down the most general low-energy effective Lagrangian in which Lorentz invariance is non-linearly realized, and to explore the consequences of broken Lorentz symmetry without having to make any assumptions about the mechanism that triggers the breaking. We carry out the construction both in flat space, in which the Lorentz group is a global spacetime symmetry, and in a generally covariant theory, in which the Lorentz group can be treated as a local internal symmetry. As an illustration of this formalism, we construct the most general effective field theory in which the rotation group remains unbroken, and show that the latter is just the Einstein-aether theory.Comment: 45 pages, no figures
    corecore