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Preheating in Derivatively-Coupled Inflation Models

Cristian Armendariz-Picon∗, Mark Trodden†, Eric J. West‡
Cosmology Group, Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA

We study preheating in theories where the inflaton couples derivatively to scalar and gauge fields.
Such couplings may dominate in natural models of inflation, in which the flatness of the inflaton
potential is related to an approximate shift symmetry of the inflaton. We compare our results
with previously studied models with non-derivative couplings. For sufficiently heavy scalar matter,
parametric resonance is ineffective in reheating the universe, because the couplings of the inflaton
to matter are very weak. If scalar matter fields are light, derivative couplings lead to a mild long-
wavelength instability that drives matter fields to non-zero expectation values. In this case however,
long-wavelength fluctuations of the light scalar are produced during inflation, leading to a host of
cosmological problems. In contrast, axion-like couplings of the inflaton to a gauge field do not
lead to production of long-wavelength fluctuations during inflation. However, again because of the
weakness of the couplings to the inflaton, parametric resonance is not effective in producing gauge
field quanta.

I. INTRODUCTION

During a sufficiently long epoch of inflation, matter
is diluted away by the quasi-exponential expansion of
the universe. The re-population of the universe with
radiation after the end of inflation is then typically
achieved by the decay of the inflaton into ordinary mat-
ter particles. The perturbative theory of this process—
reheating [1, 2]—was refined by the discovery [3, 4, 5] that
in many models the dynamics would proceed through a
stage of parametric resonance, leading to the extremely
efficient decay of the inflaton into a far from equilibrium
distribution of matter. The understanding of this prelim-
inary stage of reheating—preheating—has since been de-
veloped by many authors [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

Most work on preheating has focused on models with
direct, non-derivative, couplings to matter. Little is
known about the strength of these couplings, but the-
oretical arguments suggest that they have to be rather
weak. Indeed, in order for the inflaton to drive a phe-
nomenologically acceptable stage of inflation, its poten-
tial has to be extremely “flat”. A variety of different
ways to stabilize these flat potentials have been stud-
ied [16], but perhaps the most compelling idea that has
emerged to date is that inflation is driven by a pseudo-
Nambu-Goldstone boson [17]. In the simplest realization
of this idea, the inflaton sector is invariant under an ap-
proximate global U(1) symmetry that shifts the inflaton
field by a constant. Because only a constant potential is
invariant under shifts of the inflaton, this approximate
symmetry guarantees that deviations from flatness are
small. But at the same time, because direct couplings
between the inflaton and matter violate the shift sym-
metry, they are are also expected to be extremely weak,
and perhaps even negligible.

∗armen@physics.syr.edu
†trodden@physics.syr.edu
‡ejwest@physics.syr.edu

On the other hand, derivative couplings of the inflaton
to matter do satisfy the shift symmetry, and so there is
no reason for them to be particularly weak. It is there-
fore entirely possible that derivative couplings could be
more important than non-derivative ones during reheat-
ing. Studies of preheating in models with derivative cou-
plings [18, 19] have been less extensive than those of di-
rect couplings, and therefore our aim here is to carry
out one such study: examining preheating in these mod-
els and determining whether they lead to a qualitatively
different picture of the end of inflation and the onset of
reheating.

In the next section we will review the standard ideas
of preheating in models with direct couplings between
the inflaton and matter. In section III we then motivate
the study of derivatively coupled models and carry out
the related preheating calculations, including couplings
to both scalar and gauge fields, before concluding.

II. PARAMETRIC RESONANCE IN
CANONICAL MODELS

We begin by reviewing the basic results about preheat-
ing in a simple model with a direct coupling between the
inflaton and matter fields. For detailed methods and re-
sults regarding the physics of reheating and preheating,
we refer the reader to [15, 20].

For simplicity we assume inflation is driven by a single
real scalar field φ, slow-rolling down a quadratic effec-
tive potential, and coupled to a massive real scalar field
χ (representing matter fields) through a quartic interac-
tion,

L = −1
2

(∂µφ)∂µφ−
1
2

(∂µχ)∂µχ−
m2
φ

2
φ2−

m2
χ

2
χ2−g

2

2
φ2χ2 .

(1)
Throughout we treat the inflaton field as spa-
tially homogeneous and work in a spatially flat
Friedmann-Robertson-Walker universe with metric
ds2 = −dt2 + a2(t) d~x2.
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We expand the field χ in terms of annihilation and
creation operators

χ(x, t) =
∫

d3k

(2π)3/2

(
ak χk(t) eik·x + h.c.

)
. (2)

Then the mode functions χk and the homogeneous infla-
ton φ satisfy the field equations

χ̈k + 3Hχ̇k +

[(
k

a

)2

+m2
χ + g2φ2

]
χk = 0, (3)

φ̈+ 3Hφ̇ +
(
m2
φ + g2χ2

k

)
φ = 0, (4)

where the Hubble parameter H(t) ≡ ȧ/a is determined
by the Friedmann equation

H2 =
1

6M2
Pl

(
φ̇2 +m2

φφ
2
)
, (5)

and where we have denoted a time derivative by an over-
dot. Note that we have neglected the effects of the χ field
and its interactions with φ on the expansion rate of the
universe, since we are interested in an epoch at which the
inflaton is dominant, so that ρχ � ρφ. Similarly, we will
henceforth also neglect the back-reaction term g2χ2φ in
equation (4).

Slow-roll inflation occurs when φ̇� mφφ and
φ̈� 3Hφ̇. During slow-roll, the interaction between φ
and χ in equation (3) simply increases the effective mass
of the field χ,

m2
eff = m2

χ + g2φ2. (6)

There are several arguments that suggest that this mass
should not be much lower than the Hubble scale. First,
if meff � H, a non-zero value of χ remains frozen during
inflation, so there is no reason to assume that χ lies at
the minimum of its potential. At the same time, if the
effective mass of χ is smaller than the Hubble scale, long-
wavelength fluctuations of χ created during the inflation-
ary epoch generically lead to isocurvature perturbations.
And finally, if meff � H, the same long-wavelength fluc-
tuations will drive χ away from zero, even if χ = 0 ini-
tially, which could eventually lead to a second stage of
inflation driven by the field χ [21]. If mχ is negligible,
the requirement H < meff , in combination with equation
(5), leads to the bound

g &
mφ

MPl
≈ 10−6. (7)

The same bound also guarantees that the effective mass
of χ, equation (6), is adiabatically constant during infla-
tion, even if mχ is negligible. Hence, the coupling be-
tween the inflaton and any other light scalar cannot be
too weak.

Once inflation ends, the inflaton field begins oscillat-
ing around the minimum of its effective potential. Dur-
ing this oscillation stage, the expansion of the universe

mimics a matter domination phase. In particular, soon
after the end of inflation, the field evolution follows the
equation

φ(t) ≈ φe
sin(mφt)
mφt

, (8)

where φe ≈ MPl denotes the value of the inflaton at the
beginning of the oscillating stage1, at t ≈ m−1

φ . Because
of the rapid oscillations, the effective mass of χ ceases
being adiabatically constant for sufficiently light fields.
One may then ask whether this non-adiabatic evolution
leads to particle production. The answer is affirmative
for appropriate couplings between matter and the infla-
ton. More importantly, parametric resonance can excite
χ very efficiently.

If we neglect the expansion of the universe and the
back-reaction from χ, equations (4) and (3) can be com-
bined into the Mathieu equation,

χ̈k + [δ − 2ε cos(2t)]χk = 0, (9)

where we have defined a dimensionless time t → m−1
φ t,

and used

δ ≡
(
k

mφ

)2

+
(
mχ

mφ

)2

+2ε and ε ≡
(
g φe

2mφ

)2

. (10)

Solutions of the Mathieu equation are known to exhibit
parametric resonance—resonance for certain values of the
dimensionless parameters δ and ε. In the δ-ε plane, these
resonant solutions form band-like patterns called insta-
bility bands (see [22]). Along these unstable solutions,
the mode functions grow exponentially,

χk ∝ exp(µmφ t), (11)

where the characteristic exponent µ depends on δ and ε.
Although the Mathieu equation cannot be solved ex-

actly for all values of δ and ε, using perturbative tech-
niques in the regime of small ε, one can show that the
tips of the instability bands occur at δ = n2 where n is an
integer [22, 23]. A numerical plot of the bands is shown
in Fig. 1. Extrapolating the tips of the plotted instabil-
ity bands down to the ε = 0 axis shows agreement with
the above perturbative results. In the theory we consider
here however, equation (7) implies ε & 1. Therefore, pre-
heating occurs in the broad-resonanace regime, which, as
we shall see, is quite different from its narrow-resonance
counterpart at ε . 1. In Fig. 2 we give examples of the
behavior of unstable and stable modes. Similar results
and a more in-depth discussion can be found in [15].

Since we have neglected the expansion of the uni-
verse, the parameters of the Mathieu equation are time-
independent. A mode that lies within one of the insta-
bility bands therefore continues to grow indefinitely. Be-
cause the effective particle number density nk is related

1 More precisely, the value of the inflaton at the beginning of the
oscillating phase is actually smaller, φe ≈ 0.3MPl.
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FIG. 1: Instability diagram for solutions of the Mathieu equa-
tion in the δ-ε plane. In this diagram, shaded regions indi-
cate resonant, or unstable, solutions of the Mathieu equation.
Unshaded regions indicate stable solutions. We also show
the evolution of the parameters in equation (14) for differ-
ent comoving modes and fields: k = 0,mχ = 0 (continuous),
k = 0,mχ 6= 0 (dashed) and k 6= 0,mχ 6= 0 (dot-dashed).

to the mode functions by

nk =
1

2ωk

(
|χ̇k|2 + ω2

k|χk|2
)
− 1

2
, (12)

where ω2
k = m2

eff + (k/a)2, parametric resonance leads to
unbounded growth of particle number, as shown in Fig. 3.
Of course this unending particle production is simply a
consequence of neglecting any dissipative effects on the
inflaton (the back-reaction of matter and the expansion
of the universe).

When the expansion of the universe is included, the
inflaton undergoes damped oscillations resulting in a loss
of energy with which to drive parametric resonance in
the matter fields. But on the other hand, the expansion
of the universe redshifts all momenta, which causes the
energy of a mode to decrease as the universe expands.
It is possible to see both of these effects analytically by
making the approximation a ∝ t2/3 and substituting into
equations (4) and (3). Then, the rescaled field

χ̃k ≡ χk a3/2 (13)

satisfies the Mathieu equation (9), but now the parame-
ters δ and ε become time-dependent

δ =
(

k

mφa

)2

+
(
mχ

mφ

)2

+ 2ε and ε =
(
gφe

2mφt

)2

.

(14)
Even though δ and ε are time-dependent, their values
are nearly constant during the oscillating phase. For in-
stance, the relative change in ε during an oscillation of φ

FIG. 2: Top panel: Time evolution of an unstable mode when
expansion of the universe is neglected. Here mχ = 0, k = mφ,
and g2 = 1× 10−3.
Bottom panel: Time evolution of a stable mode when expan-
sion of the universe is neglected. Here mχ = 0, k = 3mφ,
and g2 = 1× 10−3. Here, and in all remaining figures, time is
measured in units of 2π/mφ which corresponds to the number
of oscillations in φ from the end of inflation.

is

1
mφ

ε̇

ε
= −3H

mφ
. (15)

Hence, at late times, t ≈ H−1 � m−1
φ we can think of

the parameters δ and ε as being (locally) constant. The
same assumption of late times has been actually made in
the derivation of (14).

The time-dependence in δ and ε will cause comoving
modes to migrate in the δ-ε plane. Thus, when the ex-
pansion of the universe is taken into account, particle
production in a given k-mode may take place for a brief
time interval as this mode passes in and then out of an
instability band. We also plot the trajectories of different
modes in the δ-ε plane in Fig. 1. The longer a partic-
ular mode remains inside an instability band, the more
efficient is the production of the corresponding particles.
It is clear from the figure that parametric resonance is
always more effective for longer wavelengths and lighter
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FIG. 3: Comoving number density of χ-particles in an un-
stable mode when expansion of the universe is neglected.
Here, as in the top panel of Fig. 2, mχ = 0, k = mφ, and
g2 = 1× 10−3.

fields [24]. If the initial value of ε is small, the trajec-
tory of, say, the k = 0 mode only crosses the narrow tip
of the first instability band; this is the narrow-resonance
regime, which is not particularly effective in producing
particles. On the other hand, if the initial value of ε is
sufficiently high, comoving modes remain inside several
instability bands a significant fraction of the time. We il-
lustrate the behavior of unstable modes in an expanding
background in Fig. 4. Note that parametric resonance
can excite modes of χ with energies much higher than
the inflaton mass if ε is sufficiently big.

Other models with canonical couplings between the in-
flaton and matter can be similarly examined. For ex-
ample, one can include trilinear terms proportional to
φχ2 that would arise naturally in theories in which φ
has a non-vanishing vacuum expectation value. Although
the quantitative results differ, similar qualitative results
emerge. What is less explored is whether models with
non-canonical couplings between the inflaton and matter
yield similar results. In the next section we examine such
couplings.

III. REHEATING IN MODELS WITH
DERIVATIVE COUPLINGS

A. Derivative Couplings in Inflationary Scenarios

Phenomenologically viable inflationary models require
very “flat” potentials. A simple example is pro-
vided by our chaotic model with quadratic potential
V (φ) = 1

2m
2φ2, in which sufficient flatness implies that

the mass of the field must be m ≈ 10−6MPl. If the infla-
ton did not couple to matter, this value would not pose
any particular problem, as no quantum corrections (other
than gravitational) could drive m to higher values. How-

FIG. 4: Top panel: Time evolution of an unstable mode
when expansion of the universe is included. Here mχ = 0,
k = 10−1 ×mφ, and g2 = 1 × 10−2. The resonance is less
explosive than when expansion is neglected, and it only lasts
briefly as the mode passes through an instability band. After
the mode passes through the band, it begins to decay due to
the expanding background.
Bottom panel: Comoving number density of χ-particles in the
same mode as top panel. Here it is clearly seen that the mode
passes through two instability bands (the first between t ' 8
and t ' 12, the second between t ' 15 and t ' 30). While
it passes through each band the comoving number density
increases exponentially.

ever, the inflaton must couple to matter for reheating to
occur, and these couplings will generically be responsi-
ble for large quantum corrections. In the absence of any
symmetry, a light inflaton hence requires fine tuning.

To be more specific consider an inflationary model with
bare Lagrangian given by equation (1). To lowest order
in g2 the effective mass of φ receives a correction given
by the Feynman diagram in Fig. 5. The loop integral is
quadratically divergent, so the corrected mass squared is

m2 ≈ m2
φ +

g2Λ2

16π2
, (16)

where Λ is the ultraviolet cut-off of the theory, which is
expected to be Planckian. There are hence two different
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ways to obtain m ≈ 10−6MPl: (i) The coupling of the
inflaton to matter is strong, g ≈ 1, and there has to be a
cancellation between the bare mass and the quantum cor-
rections of 1 part in 106, or (ii) the inflaton is very light
and it couples very weakly to matter. Case (i) requires
fine tuning; as we shall see, case (ii) is realized in models
where the inflaton is a Pseudo-Goldstone boson. Inci-
dentally, let us point out that if quantum corrections to
the mass of the inflaton are to be small, g2Λ2/8π2 < m2

φ,
the bound in equation (7) has to be violated.

χ

φ φ

1

FIG. 5: One-loop quantum correction to the mass of the in-
flaton. A quartic coupling between the inflaton φ and matter
χ leads to a quadratically divergent mass.

Because of the fine tuning required in case (i), sig-
nificant efforts have been devoted to develop inflation-
ary models in which the inflaton is naturally light [16].
As in many standard model extensions, these models re-
quire additional symmetries. Perhaps the most promising
candidates are models in which the inflaton is a pseudo-
Nambu-Goldstone boson, the Goldstone boson of an ap-
proximate, spontaneously broken symmetry [17]. In the
limit that the symmetry is exact, the Goldstone boson is
massless, and the inflaton potential is exactly flat. Small
symmetry breaking terms then give a correspondingly
small mass to the inflaton, and the remaining approxi-
mate symmetry guarantees that quantum corrections re-
main small.2

As we have discussed above, if the inflaton is to de-
cay into matter fields, it is, of course, important that it
couple to matter. In the context of natural models, this
generically implies that matter fields must be charged
under the spontaneously broken symmetry. To begin our
exploration of reheating in natural models of inflation,
let us therefore consider the simplest model that satisfies
both requirements: a theory with two charged complex
fields Φ and χ, invariant under a spontaneously broken
(approximate) U(1) symmetry,

L = − (∂µΦ)∂µΦ∗ − (∂µχ)∂µχ∗ − (F 2 − Φ∗Φ)2

− m2
χχ
∗χ− λ(Φ2χ2 + Φ∗2χ∗2). (17)

This Lagrangian is invariant under the U(1) transforma-
tion Φ→ eiφΦ, χ→ e−iφχ, where φ is a complex number.

2 It is sometimes argued that quantum gravity effects, such as the
creation of virtual black holes, explicitly break this symmetry
[25]. We shall ignore this possibility here.

This phase will later play the role of the inflaton, while
χ will play the role of matter. For simplicity, we also
assume that the theory has an additional Z2 symmetry
χ→ −χ.

The U(1) symmetry is spontaneously broken, because
in the vacuum the field Φ has a non-vanishing expectation
value, 〈|Φ|〉 = F . As we shall argue below, in order
for the inflaton potential to be sufficiently flat, we need
F ≈ MPl. To study the low-energy excitations around
the vacuum, we redefine

Φ→ F exp
(
i
φ

F

)
, χ→ χ exp

(
−i φ
F

)
, (18)

and ignore “radial” excitations around the minimum
of the potential because they are extremely heavy—
with masses of order F . Substituting these expressions
into (17) we find

L = − (∂µφ)∂µφ− (∂µχ)∂µχ∗ −m2
χχ
∗χ

− λF 2(χ2 + χ∗2)− 1
F 2

(∂µφ)(∂µφ)|χ2|

− i

F
(∂µφ) (χ∗∂µχ− χ∂µχ∗) . (19)

Note that this automatically generates derivative cou-
plings between the inflaton φ and the field χ (which could
be redefined away only if λ = 0). These couplings are
model-independent, in the sense that they originate from
the kinetic term of the complex field χ and the field re-
definition (18).

For φ to be a viable inflaton, it is necessary to generate
a potential for it. To this end, we introduce terms in
the Lagrangian that explicitly break the U(1) symmetry.
Because the potential has to vanish in the limit of exact
symmetry, these terms will generically lead to an inflaton
potential of the form

V (φ) ≈ µ4

[
1− cos

(
φ

F

)]
, (20)

where µ is a parameter with dimensions of mass that
characterizes the strength of the symmetry breaking
terms. Note that the potential has to be periodic, since
φ/F is a phase. For φ/F < 1, we can assume that the
potential is quadratic, with squared mass m2

φ = µ4/F 2,
which is the form we shall consider in the following.

It is convenient to work with real fields, rather than
complex ones. Defining

χ = χr + iχi, (21)

where χr and χi are, respectively, the real and imaginary
parts of χ, the Lagrangian (19) becomes

L = − (∂µφ)∂µφ− (∂µχr)∂µχr − (∂µχi)∂µχi (22)

− (m2
χ + 2λF 2)χ2

r − (m2
χ − 2λF 2)χ2

i

+
2
F

(∂µφ) (χr∂µχi − χi∂µχr)−
1
F 2

(∂µφ)(∂µφ) (χ2
r + χ2

i ).
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Therefore, derivative couplings between the inflaton and
matter are quite generic and come in two classes: cubic
and quartic. Note that in order to avoid a tachyonic
instability, we must assume m2

χ > 2λF . It is also easy
to verify that the potential (20) will satisfy the slow-
roll conditions only for F & MPl. It is unclear whether
we can trust an effective field theory description with
F � MPl, so we shall implicitly assume F ≈ MP . Since
MPl denotes the reduced Planck mass, we could push this
choice a bit higher.

B. Parametric Resonance

In section II we described how the inflaton may de-
cay by resonantly exciting modes of its decay products.
This process is non-perturbative in nature and requires
us to solve the equations of motion of the matter fields χ
during the oscillating stage of the inflaton at the end of
inflation. We now wish to examine the extent to which
this phenomenon may occur in models with derivative
couplings, such as (19).

Because, by assumption, the fields χ have a vanishing
expectation value at the end of inflation, the cubic terms
in the interaction will have no effect on their equation
of motion. Thus, we may concentrate on the quartic
interaction,

L = −1
2

(∂µφ)∂µφ −
1
2

(∂µχ)∂µχ−
1
2
m2
φφ

2 − 1
2
m2
χχ

2

− 1
F 2

(∂µφ)(∂µφ)χ2. (23)

The resulting equations of motion are[
1 + 2

( χ
F

)2
]
∇µ∇µφ = −4

χ

F 2
(∂µφ)∂µχ+m2

φφ,

∇µ∇µχ = 2
χ

F 2
(∂µφ)∂µφ+m2

χχ, (24)

with the mode equation for χ therefore given by

χ̈k + 3Hχ̇k +

[(
k

a

)2

+m2
χ −

2
F 2

φ̇2

]
χk = 0. (25)

The form of this equation already hints that inflation
and preheating in derivatively coupled models may be
qualitatively different from the canonical case considered
in section II. This is because the field χ has an effective
squared mass given by

m2
eff = m2

χ −
2
F 2

φ̇2. (26)

Although φ̇2/F 2 is small during slow-roll inflation, the
correction term becomes large when the inflaton leaves
the slow-roll regime. Therefore, for sufficiently small val-
ues of mχ, the effective mass of the field χ might become

FIG. 6: Instability diagram for solutions of the Mathieu equa-
tion in the δ-ε plane. We superimpose the evolution of the
parameters in equation (28) for different comoving modes and
fields: k = 0,mχ = 0 (continuous), k = 0,mχ 6= 0 (dashed)
and k 6= 0,mχ 6= 0 (dot-dashed).

tachyonic. Clearly, such an instability is absent as long
as the effective mass is positive,

mχ &

√
2mφMPl

F
. (27)

Interestingly, this bound is very similar to the require-
ment that the mass of χ be larger than the Hubble scale
during inflation. As a matter of fact, since F ≈ MPl,
the bound (27) simply reads mχ & mφ. During slow-roll
H ≈ mφ φ/MPl, and because φ is of order MPl during
the period of inflation accessible to present observations,
equation (27) also follows from requiring mχ > H. It
turns out that the tachyonic instability associated with
the violation of the bound (27) is actually harmless, and
it is just the production of long-wavelength fluctuations
of the field χ what renders light scalar fields undesirable.

To further study parametric resonance in this class of
models, it will be instructive to recast equation (25) into
the form of the Mathieu equation. Including the expan-
sion of the universe but neglecting back-reaction from χ,
we find that the rescaled variable (13) satisfies the Math-
ieu equation (9), with

δ =
(

k

mφa

)2

+
(
mχ

mφ

)2

− 2ε and ε =
1
2

(
φe

Ft

)2

.

(28)
The diagram in Fig. 6 shows different trajectories of

a mode in the δ-ε plane. It is again apparent from the
figure that for a given initial value of ε preheating is in
general more efficient for longer wavelength modes and
lighter fields. A crucial property of derivatively coupled
models is that ε is at most of order one, because φe ≈
MPl ≈ F . Hence, any resonance proceeds close to the
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end of the instability bands, and is clearly ineffective if
fields are heavy, mχ � mφ (δ � 1). On the other hand,
if condition (27) is violated, long-wavelength modes will
remain inside the instability band as long as the effective
mass is negative, which could lead to a significant growth
of the homogeneous component of χ.

In order to estimate the efficiency of preheating in the
tachyonic regime, let us consider the evolution of the
k = 0 mode of a light field, mχ � mφ. As we argued
above, this is the case where parametric resonance is
strongest. After the end of inflation, the mode k = 0
finds itself in the instability band at δ < 0. To lowest or-
der in ε, the characteristic exponent is simply µ =

√
−δ.

Hence, for adiabatic changes in µ, we expect the solu-
tions to grow as exp(

∫
µmφ dt). However, this is only a

good approximation if φe/F � 1. Indeed the adiabatic-
ity parameter is

µ̇

µ2
= − F

φe
, (29)

which is of order one instead. Therefore, we shall solve
equation (9) directly by approximating

δ = −
(
φe

Ft

)2

, ε = 0. (30)

The solution is a linear combination of powers in t. Keep-
ing the growing mode, and returning to the original vari-
able, we find

χ ≈ χe

(
t

te

)p
, where p = −1

2
+

√
1
4

+
φ2

e

F 2
, (31)

and χe denotes the value of χ at the end of inflation.
Clearly, as seen in Fig. (7), for φe/F ≈ 1 this ampli-
fication is very modest. Hence, parametric resonance is
rather ineffective for derivatively coupled scalar fields, no
matter whether heavy or light.

C. Preheating into Gauge Fields

Our analysis so far indicates that in natural models
of inflation the population of the universe with particles
faces several challenges. First, if matter fields are heavier
than the inflaton, parametric resonance is absent, and the
inflaton cannot decay perturbatively into matter for kine-
matical reasons. And second, if matter fields are lighter
than the inflaton, parametric resonance or perturbative
decay are possible, but then long-wavelength fluctuations
of matter are produced during inflation. These conclu-
sions crucially hinge on the assumption that matter fields
can be represented by minimally coupled scalar fields,
which, of course, is not the case.

There are just two other types of matter fields the infla-
ton can couple to: fermions (spin 1/2 and 3/2) and vec-
tors (spin 1). Reheating into fermions is not very effec-
tive because of the exclusion principle [26], so we are left

FIG. 7: The zero mode of χ for mχ = 10−2mφ. During the
initial stages, the effective mass is tachyonic, and the mode
grows as it remains in the stability band at δ < 0. Once the
mode exits the tachyonic regime, the mode function decays.
Note that long-wavelength excitations do not admit a particle
interpretation.

with vector fields as the only remaining alternative. Inci-
dentally, vector fields are particularly appealing as decay
products of the inflaton for two reasons: Their masses
are protected by gauge symmetries, so they are natu-
rally light, and the conformal nature of their couplings to
gravity prevents the production of long-wavelength fluc-
tuations of these fields during inflation.

Consider therefore an effective theory in which a light
pseudo-scalar φ (the inflaton) couples derivatively to a
U(1) gauge field Aµ (matter),

L = −1
2

(∂µφ)∂µφ− 1
2
m2
φφ

2 − 1
4
AµνAµν −

φ

4F
ÃµνAµν .

(32)
Here Aµν = ∂µAν − ∂νAµ is the field strength of the
gauge fields, Ãµν ≡ εµνρσAρσ/2 is its dual tensor, and F
is a symmetry breaking scale, with dimensions of mass.
Despite the appearances, the field φ couples derivatively
to the gauge field, because ÃµνAµν is a total derivative.
Effective theories of this type appear in axion-like models
[27], in which the coupling of the scalar to the electromag-
netic field arises from the triangle anomaly. This sort of
coupling between a pseudoscalar and electromagnetism
has been suggested as a mechanism to generate primor-
dial magnetic fields in the early universe [28], although
a detailed study of coherent magnetic field production
during inflation and the subsequent reheating stage has
concluded that this generation is not sufficiently strong
on the required scales [29].

To analyze the dynamics of reheating in this model, we
choose to work in the transverse gauge (where ∂iAi = 0
and A0 = 0). In this gauge, the equations of motion for
the inflaton and the non-vanishing components of Aµ are

∇µ∇µφ = m2
φφ+

1
a4F

εijkȦi∂jAk (33)
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ηµνδij∂µAνj =
1
F
εijk[φ̇ ∂jAk − (∂jφ)Ȧk]. (34)

We expand Ai in terms of mode functions:

A(x, t) =
∫

d3k

(2π)3/2

∑
r=±

er(k)Ar(k, t) eik·x, (35)

where ωk = |k| ≡ k is the dispersion relation of the
photons, and er(k) are circular polarization vectors,
k× e± = ∓ i k e±. Substituting this expansion into (34)
yields the decoupled mode equations

Ä± +HȦ± +

[(
k

a

)2

∓ k

a

φ̇

F

]
A± = 0. (36)

As was the case in the previously considered mod-
els, equation (36) exhibits parametric resonance for cer-
tain values of k and F−1, which can be interpreted as
explosive particle production (e.g., photon production).
This can be seen analytically in the regime where back-
reaction is neglected by putting (36) into the form of the
Mathieu equation (9). The rescaled field variable,

Ã± ≡ A± a1/2 (37)

satisfies the Mathieu equation (9) with parameters

δ =
(

2k
mφa

)2

+
2

9t2
, and ε = ± k

mφa

1
t

φe

F
, (38)

where we have introduced the dimensionless time vari-
able t→ 2m−1

φ t. There is a significant difference that dis-
tinguishes couplings to gauge fields from those to scalar
fields. Whereas for the latter the value of ε is constant
in a non-expanding universe, for the former it is propor-
tional to the energy of the photons. Hence, ε can become
very large. Since the effective theory we are using breaks
down at physical momentum k/a ≈ F we find that at
the end of inflation ε can be as large as φe/mφ ≈ 106.
However, this does not necessarily imply that paramet-
ric resonance is very effective. In Fig. 8 we show the
trajectories of different modes in the δ-ε plane for dif-
ferent values of k and φe/F = 1. As seen in the figure,
although a mode can cross several instability bands, it
does so in the narrow band regime, close to the tips of
the instability bands, mainly because ε rapidly decays as
time evolves.

In order to estimate the efficiency of preheating in
this regime, let us estimate how long a mode remains
in the first instability band (the one whose tip touches
ε = 0, δ = 1), and how much its mode function grows
during that time. For small ε, the characteristic expo-
nent along the first band is

µ =
1
2

√
ε2 − (δ − 1)2. (39)

Hence, its boundary is |δ−1| = ε, along which µ = 0. Let
us write the time at which a mode enters and leaves the

band as t1 ∓∆t, where t1 is the time at which the mode
crosses the center of the band, at δ = 1. Using equations
(38), and neglecting the factor 2/9t2, we find

t1 ≈ te
(

2k
mφae

)3/2

, ∆t ≈ 3
8
φe

F
, (40)

where te ≈ 1 is the time at the end of inflation, and ae

denotes the value of the scale factor at that time.

FIG. 8: Instability diagram for solutions of the Mathieu equa-
tion in the δ-ε plane. The trajectories follow the evolution of
the parameters in equation (38) starting at the end of infla-
tion. The corresponding values of ke ≡ k/(mφae) are ke = 3/4
(continuous), ke = 3/2 (dashed) and ke = 3 (dot-dashed). In
all cases φe/F = 1.

We shall estimate now what is the growth of the mode
function during that time. Inside the band, we can ne-
glect the term (δ−1)2 in equation (39), so that µ ≈ ε1/2,
where ε1 is the value of ε at time t1. Hence, we find that
Ã+ grows by a factor

exp(ε1 ·∆t) ≈ exp
[

3
16te

φ2
e

F 2

(mφae

2k

)3/2
]
, (41)

while the growth in A+ is suppressed by an additional
factor (te/t)1/3. Note that the above expression is strictly
valid only for ∆t � t1, and provided the change in
µ = ε/2 at time t1 is adiabatic,

µ̇

µ2

∣∣∣∣
t1

≈ −20
3
F

φe
� 1. (42)

Equation (41) hence implies that preheating into gauge
fields is very effective for φe/F � 1. However, this is not
the regime that applies in natural models of inflation,
where φe/F is of order one (a small number for our pur-
poses). In order to estimate the growth in the opposite
regime, we shall set ε ∝ φe/F → 0. In that case, the
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FIG. 9: Numerical solution of the system of equations (5),
(33) and (36) (without back-reaction) for k = mφ. There is
no amplification of the mode function, which is well-described
by the approximate solution (43).

solution of the Mathieu equation has the growing mode

Ã+ ∝ t1/3 cos

(
6 k t2/3e

mφae
t1/3 + ϕ

)
, (43)

which implies that the original variable A+ oscillates with
constant amplitude. Therefore, there is no parametric
resonance in the decay of the inflaton into gauge fields.
As before, the lack of parametric resonance is due to the
modest value of φe/F , which is a reflection of the weak
couplings between the inflaton and matter. Numerical
investigation including the effects of expansion confirms
this. Fig. (9) shows for instance the evolution of A+ for
k = mφ, which is very well approximated by equation
(43). As clearly seen in the figure, there is no particle
production.

Because the equation of motion is invariant under t→
t + π and ε → −ε, similar results hold for A− modes.
Notice that the comoving number density is now given
by

n
(±)
k =

a2

2ωk

(
|Ȧ±|2 +

(
k

a

)2

|A±|2
)
− 1

2
. (44)

IV. CONCLUSIONS

It is obviously necessary to repopulate the universe
with matter after a period of early universe inflation.
The detailed process through which this takes place can
be of great significance since, although a thermally equi-
librated bath ultimately results, non-equilibrium relics
from preheating can have important cosmological conse-
quences, even if the ultimate reheat temperature of the
universe is below the mass scale of any relics of interest.

The possible implications of preheating include the
overclosure of the universe through the production of
monopoles, moduli or gravitinos, and new possibilities
for the generation of the baryon asymmetry of the uni-
verse, either at the Grand Unified (GUT) [30, 31] or elec-
troweak [32, 33, 34, 35] scale. It is therefore important
to examine the different ways in which parametric reso-
nance may take place in inflationary models.

Because phenomenologically viable inflation requires
extremely flat potentials, models in which the couplings
of the inflaton to itself and to other fields are natu-
rally suppressed are particularly attractive. One way
to achieve this is to construct the inflaton as a pseudo-
Nambu-Goldstone boson of a spontaneously broken U(1)
symmetry—natural inflation. The U(1) symmetry is
then realized as a shift symmetry on the inflaton field,
and explicit soft breaking terms render this symmetry
approximate, and generate a naturally small mass and
approximately flat potential for the inflaton. A conse-
quence of the residual approximate symmetry is that di-
rect couplings o the inflaton to matter fields are corre-
spondingly suppressed, leading to the interesting possi-
bility that derivative couplings, unconstrained by a shift
symmetry, may be the dominant type of coupling to mat-
ter.

In this paper, we have used analytic and numerical
techniques to study reheating in models in which deriva-
tive couplings between the inflaton and matter fields are
expected to play the dominant role—such as in natu-
ral inflation. We have seen that successful reheating
places non-trivial constraints on these models and con-
fronts them with several challenges. In particular, for
heavy scalar fields (mχ � mφ) parametric resonance is
ineffective in producing matter particles, and the pertur-
bative decay is forbidden on kinematic grounds. For light
scalars (mχ � mφ) there is a a novel long-wavelength in-
stability that causes the zero mode of matter to grow as
a power law, but in this case, the production of fluctu-
ations of matter during inflation leads to several cosmo-
logical problems. We note that we have not addressed
any mechanism to keep matter fields light, which could
lead to further constraints.

Some of these problems are avoided when the inflaton
couples derivatively to gauge fields, as in axion-like mod-
els. Because of the gauge symmetry, these vector fields
are automatically light, thus allowing the perturbative
decay of the inflaton. At the same time, the confor-
mal nature of their couplings to gravity circumvents all
the problems associated with the presence of light scalars
during inflation. Nevertheless, we have found that para-
metric resonance is absent for the values of parameters
implied by natural inflationary models. As for couplings
to scalars, the origin of this absence is the weakness of
the coupling of the inflaton to matter, which is charac-
terized by the ratio of the inflaton at the end of inflation
to the spontaneous breaking scale, and is hence of order
one at most.
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