3 research outputs found

    Multiplex qPCR Discriminates Variants of Concern to Enhance Global Surveillance of SARS-CoV-2

    Get PDF
    With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a spike gene target failure (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    Get PDF
    Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness

    Predicting SARS-CoV-2 Variant Spread in a Completely Seropositive Population Using Semi-Quantitative Antibody Measurements in Blood Donors

    No full text
    SARS-CoV-2 serologic surveys estimate the proportion of the population with antibodies against historical variants, which nears 100% in many settings. New approaches are required to fully exploit serosurvey data. Using a SARS-CoV-2 anti-Spike (S) protein chemiluminescent microparticle assay, we attained a semi-quantitative measurement of population IgG titers in serial cross-sectional monthly samples of blood donations across seven Brazilian state capitals (March 2021–November 2021). Using an ecological analysis, we assessed the contributions of prior attack rate and vaccination to antibody titer. We compared anti-S titer across the seven cities during the growth phase of the Delta variant and used this to predict the resulting age-standardized incidence of severe COVID-19 cases. We tested ~780 samples per month, per location. Seroprevalence rose to >95% across all seven capitals by November 2021. Driven by vaccination, mean antibody titer increased 16-fold over the study, with the greatest increases occurring in cities with the highest prior attack rates. Mean anti-S IgG was strongly correlated (adjusted R2 = 0.89) with the number of severe cases caused by Delta. Semi-quantitative anti-S antibody titers are informative about prior exposure and vaccination coverage and may also indicate the potential impact of future SARS-CoV-2 variants
    corecore