588 research outputs found

    Nonequilibrium-induced metal-superconductor quantum phase transition in graphene

    Full text link
    We study the effects of dissipation and time-independent nonequilibrium drive on an open superconducting graphene. In particular, we investigate how dissipation and nonequilibrium effects modify the semi-metal-BCS quantum phase transition that occurs at half-filling in equilibrium graphene with attractive interactions. Our system consists of a graphene sheet sandwiched by two semi-infinite three-dimensional Fermi liquid reservoirs, which act both as a particle pump/sink and a source of decoherence. A steady-state charge current is established in the system by equilibrating the two reservoirs at different, but constant, chemical potentials. The nonequilibrium BCS superconductivity in graphene is formulated using the Keldysh path integral formalism, and we obtain generalized gap and number density equations valid for both zero and finite voltages. The behaviour of the gap is discussed as a function of both attractive interaction strength and electron densities for various graphene-reservoir couplings and voltages. We discuss how tracing out the dissipative environment (with or without voltage) leads to decoherence of Cooper pairs in the graphene sheet, hence to a general suppression of the gap order parameter at all densities. For weak enough attractive interactions we show that the gap vanishes even for electron densities away from half-filling, and illustrate the possibility of a dissipation-induced metal-superconductor quantum phase transition. We find that the application of small voltages does not alter the essential features of the gap as compared to the case when the system is subject to dissipation alone (i.e. zero voltage).Comment: 13 pages, 8 figure

    Electron-fluctuation interaction in a non-Fermi superconductor

    Full text link
    We studied the influence of the amplitude fluctuations of a non-Fermi superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The classical fluctuations give a temperature dependence in the pseudogap induced in the fermionic excitations.Comment: revtex fil

    Isolation and characterization of equine native MSC populations

    Get PDF
    Abstract Background In contrast to humans in which mesenchymal stem/stromal cell (MSC) therapies are still largely in the clinical trial phase, MSCs have been used therapeutically in horses for over 15 years, thus constituting a valuable preclinical model for humans. In human tissues, MSCs have been shown to originate from perivascular cells, namely pericytes and adventitial cells, which are identified by the presence of the cell surface markers CD146 and CD34, respectively. In contrast, the origin of MSCs in equine tissues has not been established, preventing the isolation and culture of defined cell populations in that species. Moreover, a comparison between perivascular CD146+ and CD34+ cell populations has not been performed in any species. Methods Immunohistochemistry was used to identify adventitial cells (CD34+) and pericytes (CD146+) and to determine their localization in relation to MSCs in equine tissues. Isolation of CD34+ (CD34+/CD146–/CD144–/CD45–) and CD146+ (CD146+/CD34–/CD144–/CD45–) cell fractions from equine adipose tissue was achieved by fluorescence-activated cell sorting. The isolated cell fractions were cultured and analyzed for the expression of MSC markers, using qPCR and flow cytometry, and for the ability to undergo trilineage differentiation. Angiogenic properties were analyzed in vivo using a chorioallantoic membrane (CAM) assay. Results Both CD34+ and CD146+ cells displayed typical MSC features, namely growth in uncoated tissue culture dishes, clonal growth when seeded at low density, expression of typical MSC markers, and multipotency shown by the capacity for trilineage differentiation. Of note, CD146+ cells were distinctly angiogenic compared with CD34+ and non-sorted cells (conventional MSCs), demonstrated by the induction of blood vessels in a CAM assay, expression of elevated levels of VEGFA and ANGPT1, and association with vascular networks in cocultures with endothelial cells, indicating that CD146+ cells maintain a pericyte phenotype in culture. Conclusion This study reports for the first time the successful isolation and culture of CD146+ and CD34+ cell populations from equine tissues. Characterization of these cells evidenced their distinct properties and MSC-like phenotype, and identified CD146+ cells as distinctly angiogenic, which may provide a novel source for enhanced regenerative therapies

    Physics at a Neutrino Factory

    Full text link
    In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.Comment: 133 pages, 64 figures. Report to the Fermilab Directorate. Available from http://www.fnal.gov/projects/muon_collider/ This version fixes some printing problem

    High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism -

    Full text link
    High-temperature superconductivity (HTSC) in copper oxides emerges on a layered CuO2 plane when an antiferromagnetic Mott insulator is doped with mobile hole carriers. We review extensive studies of multilayered copper oxides by site-selective nuclear magnetic resonance (NMR), which have uncovered the intrinsic phase diagram of antiferromagnetism (AFM) and HTSC for a disorder-free CuO2 plane with hole carriers. We present our experimental findings such as the existence of the AFM metallic state in doped Mott insulators, the uniformly mixed phase of AFM and HTSC, and the emergence of d-wave SC with a maximum Tc just outside a critical carrier density, at which the AFM moment on a CuO2 plane disappears. These results can be accounted for by the Mott physics based on the t-J model. The superexchange interaction J_in among spins plays a vital role as a glue for Cooper pairs or mobile spin-singlet pairs, in contrast to the phonon-mediated attractive interaction among electrons established in the Bardeen-Cooper-Schrieffer (BCS) theory. We remark that the attractive interaction for raising the TcT_c of HTSC up to temperatures as high as 160 K is the large J_in (~0.12 eV), which binds electrons of opposite spins to be on neighboring sites, and that there are no bosonic glues. It is the Coulomb repulsive interaction U(> 6 eV) among Cu-3d electrons that plays a central role in the physics behind high-Tc phenomena. A new paradigm of the SC mechanism opens to strongly correlated electron matter.Comment: 20 pages, 25 figures, Special topics "Recent Developments in Superconductivity" in J. Phys. Soc. Jpn., Published December 26, 201

    Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo

    Get PDF
    Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2 +Runx1 + perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2 + cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2 +Runx1 + cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo. </p

    Subject specific demands of teaching: Implications for out-of-field teachers

    Get PDF
    This chapter provides a framework for thinking about the subject-specific nature of teaching in terms of the knowledge, modes of inquiry and discursive practices that delineate one subject from another in the traditional school curriculum. The chapter will explore how these disciplinary traits are translated into teaching as curriculum, knowledge and pedagogy, and how this subject-specificity of teaching is juxtaposed against the more generic aspects of teaching. The chapter explores the idea that if a teacher’s expertise can be situated within a field, then they can also be positioned out-of-field. Implications for teaching out-of-field are discussed in terms of the subject-specific knowledge, processes and skills, and the difficulties associated with teacher practice. English and Australian illustrations of teacher practices from in-field and out-of-field situations are provided, in particular highlighting the demands of moving across subject boundaries. Cross-fertilisation is especially evident when subjects are integrated, therefore, the issues associated with integrated curriculum are discussed where the traditional subject boundaries are being challenged as schools are reorganised to integrate subjects through, for example, STEM teaching, or holistic curriculum designs

    Peptide nanofiber scaffolds for multipotent stromal cell culturing

    Get PDF
    Self-assembled peptide nanofibers are versatile materials providing suitable platforms for regenerative medicine applications. This chapter describes the use of peptide nanofibers as extracellular matrix mimetic scaffolds for two-dimensional (2D) and three-dimensional (3D) multipotent stromal cell culture systems and procedures for in vitro experiments using these scaffolds. Preparation of 2D and 3D peptide nanofiber scaffolds and cell culturing procedures are presented as part of in vitro experiments including cell adhesion, viability, and spreading analysis. Analysis of cellular differentiation on peptide nanofiber scaffolds is described through immunocytochemistry, qRT-PCR, and other biochemical experiments towards osteogenic and chondrogenic lineage. © Springer Science+Business Media New York 2013
    • 

    corecore