12 research outputs found

    Bioprospecting Fluorescent Plant Growth Regulators from Arabidopsis to Vegetable Crops

    Get PDF
    The phytohormone auxin is involved in almost every process of a plant’s life, from germination to plant development. Nowadays, auxin research connects synthetic chemistry, plant biology and computational chemistry in order to develop innovative and safe compounds to be used in sustainable agricultural practice. In this framework, we developed new fluorescent compounds, ethanolammonium p-aminobenzoate (HEA-pABA) and p-nitrobenzoate (HEA-pNBA), and investigated their auxin-like behavior on two main commercial vegetables cultivated in Europe, cucumber (Cucumis sativus) and tomato (Solanumlycopersicum), in comparison to the model plant Arabidopsis (Arabidopsis thaliana). Moreover, the binding modes and affinities of two organic salts in relation to the natural auxin indole-3-acetic acid (IAA) into TIR1 auxin receptor were investigated by computational approaches (homology modeling and molecular docking). Both experimental and theoretical results highlight HEA-pABA as a fluorescent compound with auxin-like activity both in Arabidopsis and the commercial cucumber and tomato. Therefore, alkanolammonium benzoates have a great potential as promising sustainable plant growth stimulators to be efficiently used in vegetable crops

    The Antioxidant Profile Evaluation of Some Tomato Landraces with Soil Salinity Tolerance Correlated with High Nutraceuticaland Functional Value

    No full text
    Romania has a wide variety of local landraces and heirloom genotypes. Our study aims to assess the performance of twenty halotolerant tomato landraces, collected from areas with medium and high levels of soil salinity, in terms ofthe accumulation of antioxidant compounds in fruits and to cluster them according to their nutraceutical components. The tomatoes used in the study were harvested once they had attained full ripeness and then analyzed for lycopene (Lyc), ascorbic acid content (AsA), total phenolic content (TPC), and total antioxidant capacity (TAC). The results revealed major differences between genotypes in terms of nutraceutical values. According to principal component analysis, the tomato landraces were grouped into five clusters, characterized by different proportions of compounds with antioxidant activity. The high/moderate nutritional values of Lyc, TAC, TPC, and AsA were obtained from varieties taken from local lands with high soil salinity, over 6.5 dS m−1. These findings support the idea that metabolites and secondary antioxidants are involved in the process of stress adaptation, thereby increasing salinity tolerance in tomatoes. Our results show that there are tomato landraces with a tolerance of adaptation to conditions of high soil salinity and provide information on their ability to synthesize molecules with antioxidant functions that protect plants against oxidative damage

    Crystal packing of HEA-<i>p</i>ABA.

    No full text
    <p>A. Crystal packing of HEA-<i>p</i>ABA representing the <i>2-D</i> layers parallel to (<i>100</i>) plane. B. Fragment of molecular packing in the crystal of HEA-<i>p</i>ABA.</p

    ORTEP drawing for HEA-<i>p</i>ABA.

    No full text
    <p>The atomic labeling and charge-assisted hydrogen bonds are represented by dashed lines. Thermal ellipsoids are shown with the 50% probability level.</p
    corecore