436 research outputs found

    The Very Large Telescope Lyman-Break Galaxy Redshift Survey – IV. Gas and galaxies at z ∼ 3 in observations and simulations

    Get PDF
    We use a combination of observations and simulation to study the relationship between star-forming galaxies and the intergalactic medium at z ≈ 3. The observed star-forming galaxy sample is based on spectroscopic redshift data taken from a combination of Very Large Telescope (VLT) Lyman-break galaxy (LBG) Redshift Survey (VLRS) data and Keck Low-Resolution Imaging Spectrometer (LRIS) observations in fields centred on bright background quasi-stellar objects (QSOs), whilst the simulation data is taken from the Galaxies–Intergalactic Medium Interaction Calculation (GIMIC). In the simulation, we find that the dominant peculiar velocities are in the form of large-scale coherent motions of gas and galaxies. Gravitational infall of galaxies towards one another is also seen, consistent with expectations from linear theory. At smaller scales, the root-mean-square (RMS) peculiar velocities in the simulation overpredict the difference between the simulated real- and z-space galaxy correlation functions. Peculiar velocity pairs with separations smaller than 1 h−1 Mpc have a smaller dispersion and explain the z-space correlation function better. The Lyα auto- and cross-correlation functions in the GIMIC simulation appear to show infall smaller than implied by the expected βLyα ≈ 1.3 (McDonald et al.). There is a possibility that the reduced infall may be due to the galaxy-wide outflows implemented in the simulation. The main challenge in comparing these simulated results with the observed Keck + VLRS correlation functions comes from the presence of velocity errors for the observed LBGs, which dominate at ≲ 1 h− 1 Mpc scales. When these are taken into account, the observed LBG correlation functions are well matched by the high amplitude of clustering, shown by higher mass (M* > 109 M⊙) galaxies in the simulation. The simulated cross-correlation function shows similar neutral gas densities around galaxies to those seen in the observations. The simulated and observed Lyα z-space autocorrelation functions again agree better with each other than with the βLyα ≈ 1.3 infall model. Our overall conclusion is that, at least in the simulation, gas and galaxy peculiar velocities are generally towards the low end of expectation. Finally, little direct evidence is seen in either simulation or observations for high transmission near galaxies due to feedback, in agreement with previous results

    Discovery of three new near-pristine absorption clouds at z=2.6z=2.6-4.4

    Full text link
    We report the discovery of three new "near-pristine" Lyman Limit Systems (LLSs), with metallicities ~1/1000 solar, at redshifts 2.6, 3.8 and 4.0, with a targeted survey at the Keck Observatory. High resolution echelle spectra of eight candidates yielded precise column densities of hydrogen and weak, but clearly detected, metal lines in seven LLSs; we previously reported the one remaining, apparently metal-free LLS, to have metallicity <1/10000 solar. Robust photoionisation modelling provides metallicities [Si/H] = -3.05 to -2.94, with 0.26 dex uncertainties (95% confidence) for three LLSs, and [Si/H] >~ -2.5 for the remaining four. Previous simulations suggest that near-pristine LLSs could be the remnants of PopIII supernovae, so comparing their detailed metal abundances with nucleosynthetic yields from supernovae models is an important goal. Unfortunately, at most two different metals were detected in each new system, despite their neutral hydrogen column densities (10^{19.2-19.4} cm^{-2}) being two orders of magnitude larger than the two previous, serendipitously discovered near-pristine LLSs. Nevertheless, the success of this first targeted survey for near-pristine systems demonstrates the prospect that a much larger, future survey could identify clear observational signatures of PopIII stars. With a well-understood selection function, such a survey would also yield the number density of near-pristine absorbers which, via comparison to future simulations, could reveal the origin(s) of these rare systems.Comment: Accepted by MNRAS. 21 pages, 27 figure

    Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint z = 2.5 galaxy

    Get PDF
    We report the serendipitous detection of a 0.2 L*, Lyα emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorption system (NHi=1016.94±0.10 cm−2) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalize over uncertainties in the shape and normalization of the ionizing radiation spectrum, we derive the total hydrogen column density NH=1019.4±0.3cm−2, and show that all the absorbing clouds are metal enriched, with Z = 0.1–0.6 Z⊙. These metallicities and the system's large velocity width (436 km s− 1) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of ∼5 M⊙ yr−1. Our photoionization model yields extremely small sizes (<100–500 pc) for the absorbing clouds, which we argue is typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a 1000-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM

    A Search for Propylene Oxide and Glycine in Sagittarius B2 (LMH) and Orion

    Full text link
    We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3-sigma upper limits derived for glycine conformer I are 3.7 x 10^{14} cm^{-2} in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3-sigma upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of 7.7 x 10^{12} cm^{-2} in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results (Jones et al.) have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of 3.0 x 10^{14} cm^{-2} in Orion-KL and 6.7 x 10^{14} cm^{-2} in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the ISM, but have not be able to plausibly assign these transitions to any carrier.Comment: 12 pages, 3 figures. Accepted by MNRAS 12th January 200

    The VLT LBG redshift survey – VI. Mapping H i in the proximity of z ∼ 3 LBGs with X-Shooter

    Get PDF
    We present an analysis of the spatial distribution and dynamics of neutral hydrogen gas around galaxies using new X-Shooter observations of z ∼ 2.5–4 quasars. Adding the X-Shooter data to our existing data set of high-resolution quasar spectroscopy, we use a total sample of 29 quasars alongside ∼1700 Lyman Break Galaxies (LBGs) in the redshift range 2 ≲ z ≲ 3.5. We measure the Lyα forest auto-correlation function, finding a clustering length of s0 = 0.081 ± 0.006 h−1 Mpc, and the cross-correlation function with LBGs, finding a cross-clustering length of s0 = 0.27 ± 0.14 h−1 Mpc and power-law slope γ = 1.1 ± 0.2. Our results highlight the weakly clustered nature of neutral hydrogren systems in the Lyα forest. Building on this, we make a first analysis of the dependence of the clustering on absorber strength, finding a clear preference for stronger Lyα forest absorption features to be more strongly clustered around the galaxy population, suggesting that they trace on average higher mass haloes. Using the projected and 2-D cross-correlation functions, we constrain the dynamics of Lyα forest clouds around z ∼ 3 galaxies. We find a significant detection of large-scale infall of neutral hydrogen, with a constraint on the Lyα forest infall parameter of βF = 1.02 ± 0.22

    TSC22 in mammary gland development and breast cancer

    Get PDF
    Mammary gland involution is characterised by a high degree of apoptosis. By identifying genes that are upregulated at this developmental stage, we aimed to discover key factors that are involved in the induction of mammary epithelial cell death and therefore present potential tumour suppressors for breast cancer. Among 96 genes recently identified as specifically upregulated early during involution were the transforming growth factor beta (TGFβ)-stimulated clone 22 homologue (TSC-22/TGFβ1-induced transcript 4) and TGFβ3 [1]. TGFβ3 has recently been shown to be necessary for induction of apoptosis during mammary gland involution, while TSC-22 overexpression can lead to cell death. We have therefore tested whether TSC-22 mRNA expression can be induced by TGFβ3 and whether it is involved in or necessary for TGFβ-induced apoptosis. We further show that TSC-22 can enhance TGFβ3-induced Smad response and epithelial cell death. In addition, overexpression of TSC-22 alone can induce a Smad response and apoptosis in mammary epithelial cell cultures, which is independent of p53. Further, we have performed tests to study the necessity for Smad proteins during TSC-22-induced apoptosis, and to establish the intracellular localisation of TSC-22. A pilot study on a small cohort of archival breast cancer cases, representing all stages of malignant progression, shows that TSC-22 protein was reduced or undetectable in 60% of breast carcinomas when compared with adjacent normal breast tissue, suggesting that TSC-22 could indeed be a potential novel tumour suppressor gene. We shall present data showing that methylation of the TSC-22 promoter is not involved in the reduction of TSC-22 protein in breast cancer

    Vortex sound models: Passive and active noise control

    Get PDF

    Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint z = 2.5 galaxy

    Get PDF
    We report the serendipitous detection of a 0.2 L*, Lyα emitting galaxy at redshift 2.5 at an impact parameter of 50 kpc from a bright background QSO sightline. A high-resolution spectrum of the QSO reveals a partial Lyman-limit absorption system (N[subscript Hi] = 10[superscript 16.94±0.10] cm[superscript −2]) with many associated metal absorption lines at the same redshift as the foreground galaxy. Using photoionization models that carefully treat measurement errors and marginalize over uncertainties in the shape and normalization of the ionizing radiation spectrum, we derive the total hydrogen column density N[subscript H] = 10[superscript 19.4±0.3] cm[superscript −2], and show that all the absorbing clouds are metal enriched, with Z = 0.1–0.6 Z[subscript ⊙]. These metallicities and the system's large velocity width (436 km s[superscript −1]) suggest the gas is produced by an outflowing wind. Using an expanding shell model we estimate a mass outflow rate of ~5 M[subscript ⊙] yr[superscript −1]. Our photoionization model yields extremely small sizes (<100–500 pc) for the absorbing clouds, which we argue is typical of high column density absorbers in the circumgalactic medium (CGM). Given these small sizes and extreme kinematics, it is unclear how the clumps survive in the CGM without being destroyed by hydrodynamic instabilities. The small cloud sizes imply that even state-of-the-art cosmological simulations require more than a 1000-fold improvement in mass resolution to resolve the hydrodynamics relevant for cool gas in the CGM

    Towards the statistical detection of the warm-hot intergalactic medium in intercluster filaments of the cosmic web.

    Get PDF
    Modern analyses of structure formation predict a universe tangled in a ‘cosmic web’ of dark matter and diffuse baryons. These theories further predict that at low z, a significant fraction of the baryons will be shock-heated to T ∼ 105–107 K yielding a warm–hot intergalactic medium (WHIM), but whose actual existence has eluded a firm observational confirmation. We present a novel experiment to detect the WHIM, by targeting the putative filaments connecting galaxy clusters. We use HST/COS to observe a remarkable quasi-stellar object (QSO) sightline that passes within Δd = 3 Mpc from the seven intercluster axes connecting seven independent cluster pairs at redshifts 0.1 ≤ z ≤ 0.5. We find tentative excesses of total H I, narrow H I (NLA; Doppler parameters b < 50 km s−1), broad H I (BLA; b ≥ 50 km s−1) and O VI absorption lines within rest-frame velocities of Δv ≲ 1000 km s−1 from the cluster-pairs redshifts, corresponding to ∼2, ∼1.7, ∼6 and ∼4 times their field expectations, respectively. Although the excess of O VI likely comes from gas close to individual galaxies, we conclude that most of the excesses of NLAs and BLAs are truly intergalactic. We find the covering fractions, fc, of BLAs close to cluster pairs are ∼4–7 times higher than the random expectation (at the ∼2σ c.l.), whereas the fc of NLAs and O VI are not significantly enhanced. We argue that a larger relative excess of BLAs compared to those of NLAs close to cluster pairs may be a signature of the WHIM in intercluster filaments. By extending this analysis to tens of sightlines, our experiment offers a promising route to detect the WHIM
    • …
    corecore