8 research outputs found

    Brain glucose concentrations in healthy humans subjected to recurrent hypoglycemia

    Get PDF
    Mechanisms responsible for hypoglycemia unawareness remain unknown. Previously, we found that patients with type 1 diabetes and hypoglycemia unawareness had increased brain glucose concentrations as measured by (1)H-magnetic resonance spectroscopy (MRS) compared with controls measured under the same metabolic condition, suggesting that an alteration in brain glucose transport and/or metabolism may play a role in the pathogenesis of hypoglycemia unawareness. To determine whether the brain glucose concentration is altered in normal subjects subjected to recurrent hypoglycemia, we compared the brain glucose concentrations measured in healthy subjects after three episodes of hypoglycemia to blunt the counterregulatory response over 24 hr and compared this value with that measured at a time remote from the antecedent hypoglycemia protocol. Sixteen subjects (9 M/7 F, age 36 +/- 10 years, mean +/- SD) underwent three hypoglycemic clamps for 30 min at 8 AM (0 hr), 5 PM (9 hr), and 7 AM (24 hr). After the third hypoglycemic clamp, subjects underwent a hyperglycemic clamp during which brain glucose concentration was measured by MRS at 4 T. Brain glucose concentration after repeated hypoglycemia was not different from the brain glucose concentration measured in the same subjects during a control study (5.1 +/- 0.8 vs. 4.5 +/- 0.5 mumol/g wet weight, respectively, P = 0.05). These observations suggest that brain glucose transport or metabolism is not altered following short episodes of recurrent hypoglycemia in healthy human volunteers

    Consensus Recommendations for the Use of Automated Insulin Delivery (AID) Technologies in Clinical Practice

    Get PDF
    International audienceThe significant and growing global prevalence of diabetes continues to challenge people with diabetes (PwD), healthcare providers and payers. While maintaining near-normal glucose levels has been shown to prevent or delay the progression of the long-term complications of diabetes, a significant proportion of PwD are not attaining their glycemic goals. During the past six years, we have seen tremendous advances in automated insulin delivery (AID) technologies. Numerous randomized controlled trials and real-world studies have shown that the use of AID systems is safe and effective in helping PwD achieve their long-term glycemic goals while reducing hypoglycemia risk. Thus, AID systems have recently become an integral part of diabetes management. However, recommendations for using AID systems in clinical settings have been lacking. Such guided recommendations are critical for AID success and acceptance. All clinicians working with PwD need to become familiar with the available systems in order to eliminate disparities in diabetes quality of care. This report provides much-needed guidance for clinicians who are interested in utilizing AIDs and presents a comprehensive listing of the evidence payers should consider when determining eligibility criteria for AID insurance coverage

    Human brain glycogen content and metabolism: implications on its role in brain energy metabolism

    No full text
    The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology
    corecore