340 research outputs found

    An elastoplastic analysis of a uniaxially loaded sheet with an interference-fit bolt

    Get PDF
    The stresses and strains in a uniaxially loaded sheet with an unloaded interference-fit bolt were calculated by an elastoplastic finite-element analysis. The material properties represented a 7075-T6 aluminum alloy sheet and a steel bolt. The analysis considered the two ideal cases of no slip and no friction at the bolt-sheet interface for a single combination of bolt diameter, interference level, and cyclic loading. When the bolt was inserted, the sheet deformed plastically near the hole; the first tensile load cycle produced additional yielding, but subsequent cycles to the same level caused only elastic cyclic stresses. These stresses together with fatigue data for unnotched specimens were used to estimate crack initiation periods and initiation sites. The cases analyzed with interference-fit bolts were predicted to have crack initiation periods which were about 50 times that for a clearance-fit bolt. Crack initiation was predicted to occur on the transverse axis at a distance of about one radius from the hole

    A method for determining local elastoplastic stress and strain in metallurgically bonded notched laminates subjected to a loading cycle

    Get PDF
    A semianalytical method was developed for determining elastoplastic cyclic stresses and strains at notch roots in metallurgically bonded metal laminates. The method is based on the Neuber equation, which was used with an effective stress-strain curve for the laminate. It was applied to laminates containing a circular hole which were subjected to one cycle of reversed loading. The laminates consisted of two elasto-perfectly-plastic materials with different yield strengths and with either equal or different Young's moduli. A laminate of high-strength titanium alloy with alternate layers of commercially pure titanium was also analyzed. The accuracy of the method was evaluated by comparing the stresses and strains with those calculated from a finite-element analysis. The results estimated by the simple method based on the Neuber equation agreed closely with the results computed from the more elaborate finite-element analysis

    Three-dimensional analysis of 0/90s and 90/0s laminates with a central circular hole

    Get PDF
    Stress distributions were calculated near a circular hole in laminates, using a three dimensional finite element analysis. These stress distributions were presented three ways: through the thickness at the hole boundary, along radial lines at the 0/90 and 90/0 interfaces, and around the hole at these interfaces. The interlaminar normal stress, and the shear stress, distributions had very steep gradients near the hole boundary, suggesting interlaminar stress singularities. The largest compressive stress occurred at about 60 deg from the load axis. A simple procedure was introduced to calculate interlaminar stresses near the hole boundary. It used stresses calculated by an exact two dimensional analysis of a laminate with a hole as input to a quasi three dimensional model. It produced stresses that agreed closely with those from the three dimensional finite element model

    An equation for bolt clampup relaxation in transient environments

    Get PDF
    An equation for bolt clampup relaxation for transient temperature-moisture (T-M) conditions was derived starting with a relaxation equation for steady-state conditions, and then using an incremental time approach that exploits the superposition principle for linear viscoelasticity. The resulting equation uses the initial T-M condition (at the time of clamping), the T-M history after clamping, and elastic clampup coefficients for temperature and moisture changes. For a given material and joint configuration, the clampup coefficients are constants that can be calculated by elastic analyses. The clampup equation was used to calculate the changes in clampup occurring in a T300/5208 graphite/epoxy joint exposed to a one-year history of temperature and moisture. Two cases were considered: one was a dry joint exposed to a relatively humid environment and the other was a nearly saturated joint exposed to an arid environment

    An evaluation of potential locations for AROD ground stations

    Get PDF
    Airborne Range and Orbit Determination tracking stations potential locations evaluation and accuracy during early minutes of fligh

    Failure analysis of a graphite/epoxy laminate subjected to bolt bearing loads

    Get PDF
    Quasi-isotropic graphite/epoxy laminates (T300/5208) were tested under bolt bearing loads to study failure modes, strengths, and failure energy. Specimens had a range of configurations to produce failures by the three nominal failure modes: tension, shearout, and bearing. Radiographs were made after damage onset and after ultimate load to examine the failure modes. Also, the laminate stresses near the bolt hole calculated for each test specimen configuration, and then used with a failure criterion to analyze the test data. Failures involving extensive bearing damage were found to dissipate significantly more energy than tension dominated failures. The specimen configuration influenced the failure modes and therefore also influenced the failure energy. In the width-to-diameter ratio range of 4 to 5, which is typical of structural joints, a transition from the tension mode to the bearing mode was shown to cause a large increase in failure energy. The failure modes associated with ultimate strength were usually different from those associated with the damage onset. Typical damage sequences involved bearing damage onset at the hole boundary followed by tension damage progressing from the hole boundary

    Bolt-bearing fatigue of a graphite/epoxy laminate

    Get PDF
    Graphite/epoxy laminates were tested under bolt-bearing loads for a range of bolt clampup torques and for several test conditions involving water. High clampup torque improved both the static strength and fatigue limit by about 100 percent compared to a simple pin-bearing case, which had no through-the-thickness constraint. The static strength improvement was explained in terms of failure modes. Bolt clampup also influenced the hole elongation that developed before failure. For both the static and fatigue tests, the hole elongations were much larger for the low-torque clampup. Tests in water degraded static bearing strength only slightly, but reduced the fatigue limit about 40 percent below that for tests conducted in air
    corecore