46 research outputs found

    First application of an axial speed of sound measurement technique in the monitoring of tendon healing

    Get PDF
    PublishedJournal ArticleN/AInstitut National de la Recherche AgronomiqueRe´gion Basse NormandieDirection Ge´ne´rale de l’Enseignement et de la Recherch

    Axial speed of sound for the monitoring of injured equine tendons: a preliminary study.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tEquine superficial digital flexor tendons (SDFT) are often injured, and they represent an excellent model for human sport tendinopathies. While lesions can be precisely diagnosed by clinical evaluation and ultrasonography, a prognosis is often difficult to establish; the knowledge of the injured tendon's mechanical properties would help in anticipating the outcome. The objectives of the present study were to compare the axial speed of sound (SOS) measured in vivo in normal and injured tendons and to investigate their relationship with the tendons' mechanical parameters, in order to assess the potential of quantitative axial ultrasound to monitor the healing of the injured tendons. SOS was measured in vivo in the right fore SDFTs of 12 horses during walk, before and 3.5 months after the surgical induction of a bilateral core lesion. The 12 horses were then euthanized, their SDFTs isolated and tested in tension to measure their elastic modulus and maximal load (and corresponding stress). SOS significantly decreased from 2179.4 ± 31.4 m/s in normal tendons to 2065.8 ± 67.1 m/s 3.5 months after the surgical induction, and the tendons' elastic modulus (0.90 ± 0.17 GPa) was found lower than what has been reported in normal tendons. While SOS was not correlated to tendon maximal load and corresponding stress, the SOS normalized on its value in normal tendons was correlated to the tendons' elastic modulus. These preliminary results confirm the potential of axial SOS in helping the functional assessment of injured tendon.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche AgronomiqueAgence Nationale de la Recherch

    Axial speed of sound is related to tendon's nonlinear elasticity.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tAxial speed of sound (SOS) measurements have been successfully applied to noninvasively evaluate tendon load, while preliminary studies showed that this technique also has a potential clinical interest in the follow up of tendon injuries. The ultrasound propagation theory predicts that the SOS is determined by the effective stiffness, mass density and Poisson's ratio of the propagating medium. Tendon stiffness characterizes the tissue's mechanical quality, but it is often measured in quasi-static condition and for entire tendon segments, so it might not be the same as the effective stiffness which determines the SOS. The objectives of the present study were to investigate the relationship between axial SOS and tendon's nonlinear elasticity, measured in standard laboratory conditions, and to evaluate if tendon's mass density and cross-sectional area (CSA) affect the SOS level. Axial SOS was measured during in vitro cycling of 9 equine superficial digital tendons. Each tendon's stiffness was characterized with a tangent modulus (the continuous derivative of the true stress/true strain curve) and an elastic modulus (the slope of this curve's linear region). Tendon's SOS was found to linearly vary with the square root of the tangent modulus during loading; tendon's SOS level was found correlated to the elastic modulus's square root and inversely correlated to the tendon's CSA, but it was not affected by tendon's mass density. These results confirm that tendon's tangent and elastic moduli, measured in laboratory conditions, are related to axial SOS and they represent one of its primary determinants.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    True stress and Poisson's ratio of tendons during loading.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tExcessive axial tension is very likely involved in the aetiology of tendon lesions, and the most appropriate indicator of tendon stress state is the true stress, the ratio of instantaneous load to instantaneous cross-sectional area (CSA). Difficulties to measure tendon CSA during tension often led to approximate true stress by assuming that CSA is constant during loading (i.e. by the engineering stress) or that tendon is incompressible, implying a Poisson's ratio of 0.5, although these hypotheses have never been tested. The objective of this study was to measure tendon CSA variation during quasi-static tensile loading, in order to assess the true stress to which the tendon is subjected and its Poisson's ratio. Eight equine superficial digital flexor tendons (SDFT, about 30cm long) were tested in tension until failure while the CSA of each tendon was measured in its metacarpal part by means of a linear laser scanner. Axial elongation and load were synchronously recorded during the test. CSA was found to linearly decrease with strain, with a mean decrease at failure of -10.7±2.8% (mean±standard deviation). True stress at failure was 7.1-13.6% higher than engineering stress, while stress estimation under the hypothesis of incompressibility differed from true stress of -6.6 to 2.3%. Average Poisson's ratio was 0.55±0.12 and did not significantly vary with load. From these results on equine SDFT it was demonstrated that tendon in axial quasi-static tension can be considered, at first approximation, as an incompressible material.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    Carpal Tunnel Syndrome: A Review of the Recent Literature

    Get PDF
    Carpal Tunnel Syndrome (CTS) remains a puzzling and disabling condition present in 3.8% of the general population. CTS is the most well-known and frequent form of median nerve entrapment, and accounts for 90% of all entrapment neuropathies. This review aims to provide an overview of this common condition, with an emphasis on the pathophysiology involved in CTS. The clinical presentation and risk factors associated with CTS are discussed in this paper. Also, the various methods of diagnosis are explored; including nerve conduction studies, ultrasound, and magnetic resonance imaging
    corecore