609 research outputs found

    Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.

    Get PDF
    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment

    Non-extensivity of the chemical potential of polymer melts

    Full text link
    Following Flory's ideality hypothesis the chemical potential of a test chain of length nn immersed into a dense solution of chemically identical polymers of length distribution P(N) is extensive in nn. We argue that an additional contribution δμc(n)+1/ρn\delta \mu_c(n) \sim +1/\rho\sqrt{n} arises (ρ\rho being the monomer density) for all (N)\P(N) if nn \ll which can be traced back to the overall incompressibility of the solution leading to a long-range repulsion between monomers. Focusing on Flory distributed melts we obtain δμc(n)(12n/)/ρn\delta \mu_c(n) \approx (1- 2 n/) / \rho \sqrt{n} for n2n \ll ^2, hence, δμc(n)1/ρn\delta \mu_c(n) \approx - 1/\rho \sqrt{n} if nn is similar to the typical length of the bath . Similar results are obtained for monodisperse solutions. Our perturbation calculations are checked numerically by analyzing the annealed length distribution P(N) of linear equilibrium polymers generated by Monte Carlo simulation of the bond-fluctuation model. As predicted we find, e.g., the non-exponentiality parameter Kp1/p!pK_p \equiv 1 - /p!^p to decay as Kp1/K_p \approx 1 / \sqrt{} for all moments pp of the distribution.Comment: 14 pages, 6 figures, submitted to EPJ

    Are polymer melts "ideal"?

    Full text link
    It is commonly accepted that in concentrated solutions or melts high-molecular weight polymers display random-walk conformational properties without long-range correlations between subsequent bonds. This absence of memory means, for instance, that the bond-bond correlation function, P(s)P(s), of two bonds separated by ss monomers along the chain should exponentially decay with ss. Presenting numerical results and theoretical arguments for both monodisperse chains and self-assembled (essentially Flory size-distributed) equilibrium polymers we demonstrate that some long-range correlations remain due to self-interactions of the chains caused by the chain connectivity and the incompressibility of the melt. Suggesting a profound analogy with the well-known long-range velocity correlations in liquids we find, for instance, P(s)P(s) to decay algebraically as s3/2s^{-3/2}. Our study suggests a precise method for obtaining the statistical segment length \bstar in a computer experiment.Comment: 4 pages, 3 figure

    Innate Immune Recognition of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a major health problem, with 10 million new cases diagnosed each year. Innate immunity plays an important role in the host defense against M. tuberculosis, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of M. tuberculosis, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs). Among the TLR family, TLR2, TLR4, and TLR9 and their adaptor molecule MyD88 play the most prominent roles in the initiation of the immune response against tuberculosis. In addition to TLRs, other PRRs such as NOD2, Dectin-1, Mannose receptor, and DC-SIGN are also involved in the recognition of M. tuberculosis. Human epidemiological studies revealed that genetic variation in genes encoding for PRRs and downstream signaling products influence disease susceptibility, severity, and outcome. More insight into PRRs and the recognition of mycobacteria, combined with immunogenetic studies in TB patients, does not only lead to a better understanding of the pathogenesis of tuberculosis but also may contribute to the design of novel immunotherapeutic strategies

    Knowledge gaps and research priorities in tuberculous meningitis.

    Get PDF
    Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1 st and 2 nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease

    Accuracy of diabetes screening methods used for people with tuberculosis, Indonesia, Peru, Romania, South Africa

    Get PDF
    Objective To evaluate the performance of diagnostic tools for diabetes mellitus, including laboratory methods and clinical risk scores, in newly-diagnosed pulmonary tuberculosis patients from four middle-income countries. Methods In a multicentre, prospective study, we recruited 2185 patients with pulmonary tuberculosis from sites in Indonesia, Peru, Romania and South Africa from January 2014 to September 2016. Using laboratory-measured glycated haemoglobin (HbA1c) as the gold standard, we measured the diagnostic accuracy of random plasma glucose, point-of-care HbA1c, fasting blood glucose, urine dipstick, published and newly derived diabetes mellitus risk scores and anthropometric measurements. We also analysed combinations of tests, including a two-step test using point-of-care HbA1cwhen initial random plasma glucose was ≥ 6.1 mmol/L. Findings The overall crude prevalence of diabetes mellitus among newly diagnosed tuberculosis patients was 283/2185 (13.0%; 95% confidence interval, CI: 11.6–14.4). The marker with the best diagnostic accuracy was point-of-care HbA1c (area under receiver operating characteristic curve: 0.81; 95% CI: 0.75–0.86). A risk score derived using age, point-of-care HbA1c and random plasma glucose had the best overall diagnostic accuracy (area under curve: 0.85; 95% CI: 0.81–0.90). There was substantial heterogeneity between sites for all markers, but the two-step combination test performed well in Indonesia and Peru. Conclusion Random plasma glucose followed by point-of-care HbA1c testing can accurately diagnose diabetes in tuberculosis patients, particularly those with substantial hyperglycaemia, while reducing the need for more expensive point-of-care HbA1c testing. Risk scores with or without biochemical data may be useful but require validation

    The Human TPR Protein TTC4 Is a Putative Hsp90 Co-Chaperone Which Interacts with CDC6 and Shows Alterations in Transformed Cells

    Get PDF
    BACKGROUND: The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant melanoma. METHODOLOGY/PRINCIPLE FINDINGS: Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their interaction with the CDC6 protein. CONCLUSIONS/SIGNIFICANCE: Based on these results and our previous work with the Drosophila Dpit47 protein we suggest that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through which TTC4 could influence malignant development of cells

    The C-Type Lectin Receptor CLECSF8/CLEC4D Is a Key Component of Anti-Mycobacterial Immunity

    Get PDF
    Open Access funded by Wellcome Trust: Under a Creative Commons license Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved. Acknowledgments We would like to thank S. Hardison, P. Redelinghuys, J. Taylor, C. Wallace, A. Richmond, S. Hadebe, A. Plato, F. Abbass, L. Fick, N. Allie, R. Wilkinson, K. Wilkinson, S. Cooper, D. Lang, and V. Kumar for reagents and assistance, and the animal facility staff for the care of our animals. This work was supported by the MRC (UK) and Wellcome Trust (G.D.B.); MRC (South Africa) and Sydney Brenner Fellowship (M.J.M.); Vici (M.G.N.), Vidi (R.v.C.), and Veni grants (T.S.P.) from the Netherlands Organization for Scientific Research; the Royal Netherlands Academy of Arts and Sciences (T.H.M.O.); EC FP7 projects (NEWTBVAC, ADITEC; T.H.M.O.); Carnegie Corporation and CIDRI (J.C.H.); and the University of Aberdeen (B.K.).Peer reviewedPublisher PD
    corecore