29 research outputs found
Detection of inconsistencies in geospatial data with geostatistics
Almost every researcher has come through observations that “drift” from the rest of the sample, suggesting some inconsistency. The aim of this paper is to propose a new inconsistent data detection method for continuous geospatial data based in Geostatistics, independently from the generative cause (measuring and execution errors and inherent variability data). The choice of Geostatistics is based in its ideal characteristics, as avoiding systematic errors, for example. The importance of a new inconsistent detection method proposal is in the fact that some existing methods used in geospatial data consider theoretical assumptions hardly attended. Equally, the choice of the data set is related to the importance of the LiDAR technology (Light Detection and Ranging) in the production of Digital Elevation Models (DEM). Thus, with the new methodology it was possible to detect and map discrepant data. Comparing it to a much utilized detections method, BoxPlot, the importance and functionality of the new method was verified, since the BoxPlot did not detect any data classified as discrepant. The proposed method pointed that, in average, 1,2% of the data of possible regionalized inferior outliers and, in average, 1,4% of possible regionalized superior outliers, in relation to the set of data used in the study
Small area estimation: new developments and directions
The purpose of this paper is to provide a critical review of the main advances in small area estimation (SAE) methods in recent years. We also discuss some of the earlier developments, which serve as a necessary background for the new studies. The review focuses on model dependent methods with special emphasis on point prediction of the target area quantities, and mean square error assessments. The new models considered are models used for discrete measurements, time series models and models that arise under informative sampling. The possible gains from modeling the correlations among small area random effects used to represent the unexplained variation of the small area target quantities are examined. For review and appraisal of the earlier methods used for SAE, see Ghosh and Rao (1994)