5,627 research outputs found

    The precession of the giant HH34 outflow: a possible jet deceleration mechanism

    Get PDF
    The giant jets represent a fundamental trace of the historical evolution of the outflow activity over timescales which are comparable to the accretion time of the outflow sources in their main protostellar phase. The study of such huge jets provides the possibility of retrieving important elements related to the life of the outflow sources. In this paper, we study the role of precession (combined with jet velocity-variability and the resulting enhanced interaction with the surrounding environment) as a deceleration mechanism for giant jets using a numerical approach. We obtain predictions of H alpha intensity maps and position-velocity diagrams from 3D simulations of the giant HH 34 jet (including an appropriate ejection velocity time-variability and a precession of the outflow axis), and we compare them with previously published observations of this object. Our simulations represent a step forward from previous numerical studies of HH objects, in that the use of a 7-level, binary adaptive grid has allowed us to compute models which appropiately cover all relevant scales of a giant jet, from the ~ 100 AU jet radius close to the source to the ~ 1 pc length of the outflow. A good qualitative and quantitative agreement is found between the model predictions and the observations. Moreover, we show that a critical parameter for obtaining a better or worse agreement with the observations is the ratio rho_j/rho_a between the jet and the environmental densities. The implications of this result in the context of the current star formation models are discussed (ABRIDGED).Comment: 19 pages, 8 eps figs.,uses aaspp4; accepted by the Ap

    Strategies for Controlling House Fly Populations Resistant to Cyromazine

    Get PDF
    The objectives of this study were to compare, from both biological and economic viewpoints, the impact of various control strategies and evaluate their effect on cyromazine-resistant Musca domestica L., and beneficial house fly pupal parasitoids on caged-layer farms (240,000 hens) in Argentina. The strategies evaluated were: chemical, chemical + cultural, and chemical + cultural + biological (integrated management). The products used were: cyromazine 1% and 50%, DDVP, azamethiphos with and without z-9-tricosene, lime, and the parasitoids Spalangia endius Walker and Muscidifurax raptor Girault & Sanders. In the absence of control measures, fly density increased quickly and the average parasitism rate was 12%. When only chemical control was used, fly populations were reduced to ca. 40/grid and parasitism averaged 2%. When topical cyromazine was used in conjunction with cultural control (lime), fly populations were reduced more rapidly than those treated with cyromazine 1% feed-through. With the subsequent use of parasitic wasps, high parasitism levels were observed and house flies were reduced to tolerance levels in the shortest time. From an economic and biological point of view, the best treatment for house flies resistant to cyromazine was biological + cultural + chemical with localized applications of topical cyromazine

    Probing halo nucleus structure through intermediate energy elastic scattering

    Get PDF
    This work addresses the question of precisely what features of few body models of halo nuclei are probed by elastic scattering on protons at high centre-of-mass energies. Our treatment is based on a multiple scattering expansion of the proton-projectile transition amplitude in a form which is well adapted to the weakly bound cluster picture of halo nuclei. In the specific case of 11^{11}Li scattering from protons at 800 MeV/u we show that because core recoil effects are significant, scattering crosssections can not, in general, be deduced from knowledge of the total matter density alone. We advocate that the optical potential concept for the scattering of halo nuclei on protons should be avoided and that the multiple scattering series for the full transition amplitude should be used instead.Comment: 8 pages REVTeX, 1 eps figure, accepted for publication in Phys. Rev.

    Multiple scattering effects in quasi free scattering from halo nuclei: a test to Distorted Wave Impulse Approximation

    Full text link
    Full Faddeev-type calculations are performed for 11^{11}Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.Comment: 7 pages, 16 figures, to be published in Phys. Rev.

    Gamma-widths, lifetimes and fluctuations in the nuclear quasi-continuum

    Full text link
    Statistical γ\gamma-decay from highly excited states is determined by the nuclear level density (NLD) and the γ\gamma-ray strength function (γ\gammaSF). These average quantities have been measured for several nuclei using the Oslo method. For the first time, we exploit the NLD and γ\gammaSF to evaluate the γ\gamma-width in the energy region below the neutron binding energy, often called the quasi-continuum region. The lifetimes of states in the quasi-continuum are important benchmarks for a theoretical description of nuclear structure and dynamics at high temperature. The lifetimes may also have impact on reaction rates for the rapid neutron-capture process, now demonstrated to take place in neutron star mergers.Comment: CGS16, Shanghai 2017, Proceedings, 5 pages, 3 figure

    Controlled Anisotropic Deformation of Ag Nanoparticles by Si Ion Irradiation

    Full text link
    The shape and alignment of silver nanoparticles embedded in a glass matrix is controlled using silicon ion irradiation. Symmetric silver nanoparticles are transformed into anisotropic particles whose larger axis is along the ion beam. Upon irradiation, the surface plasmon resonance of symmetric particles splits into two resonances whose separation depends on the fluence of the ion irradiation. Simulations of the optical absorbance show that the anisotropy is caused by the deformation and alignment of the nanoparticles, and that both properties are controlled with the irradiation fluence.Comment: Submitted to Phys. Rev. Lett. (October 14, 2005
    corecore