102 research outputs found

    Axion search with a quantum-limited ferromagnetic haloscope

    Full text link
    A ferromagnetic axion haloscope searches for Dark Matter in the form of axions by exploiting their interaction with electronic spins. It is composed of an axion-to-electromagnetic field transducer coupled to a sensitive rf detector. The former is a photon-magnon hybrid system, and the latter is based on a quantum-limited Josephson parametric amplifier. The hybrid system consists of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by means of a static magnetic field. Our setup is the most sensitive rf spin-magnetometer ever realized. The minimum detectable field is 5.5×10−19 5.5\times10^{-19}\,T with 9 h integration time, corresponding to a limit on the axion-electron coupling constant gaee≤1.7×10−11g_{aee}\le1.7\times10^{-11} at 95% CL. The scientific run of our haloscope resulted in the best limit on DM-axions to electron coupling constant in a frequency span of about 120 MHz, corresponding to the axion mass range 42.442.4-43.1 μ43.1\,\mueV. This is also the first apparatus to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure

    Searching for galactic axions through magnetized media: QUAX status report

    Full text link
    The current status of the QUAX R\&D program is presented. QUAX is a feasibility study for a detection of axion as dark matter based on the coupling to the electrons. The relevant signal is a magnetization change of a magnetic material placed inside a resonant microwave cavity and polarized with a static magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    Cavity magnon polariton based precision magnetometry

    Full text link
    A photon-magnon hybrid system can be realised by coupling the electron spin resonance of a magnetic material to a microwave cavity mode. The quasiparticles associated with the system dynamics are the cavity magnon polaritons, which arise from the mixing of strongly coupled magnons and photons. We illustrate how these particles can be used to probe the magnetisation of a sample with a remarkable sensitivity, devising suitable spin-magnetometers which ultimately can be used to directly assess oscillating magnetic fields. Specifically, the capability of cavity magnon polaritons of converting magnetic excitations to electromagnetic ones, allows for translating to magnetism the quantum-limited sensitivity reached by state-of-the-art electronics. Here we employ hybrid systems composed of microwave cavities and ferrimagnetic spheres, to experimentally implement two types of novel spin-magnetometers.Comment: 7 pages, 3 figure

    Comparative analysis of mesenchymal stromal cells biological properties

    Get PDF
    The stromal progenitors of mesodermal cells, mesenchymal stromal cells (MSCs), are a heterogeneous population of plastic adherent fibroblast-like cells with extensive proliferative capacity and differentiation potential. Human MSCs have now been isolated from various tissues including bone marrow, muscle, skin, and adipose tissue, the latter being one of the most suitable cell sources for cell therapy, because of its easy accessibility, minimal morbidity, and abundance of cells. Bone marrow and subcutaneous or visceral adipose tissue samples were collected, digested with collagenase if needed, and seeded in Iscove's medium containing 5% human platelet lysate. Nonadherent cells were removed after 2-3 days and the medium was replaced twice a week. Confluent adherent cells were detached, expanded, and analyzed for several biological properties such as morphology, immunophenotype, growth rate, senescence, clonogenicity, differentiation capacity, immunosuppression, and secretion of angiogenic factors. The results show significant differences between lines derived from subcutaneous fat compared to those derived from visceral fat, such as the higher proliferation rate of the first and the strong induction of angiogenesis of the latter. We are convinced that the identification of the peculiarities of MSCs isolated from different tissues will lead to their more accurate use in cell therapy

    Out-of-equilibrium phonons in gated superconducting switches

    Get PDF
    Recent experiments have suggested that superconductivity in metallic nanowires can be suppressed by the application of modest gate voltages. The source of this gate action has been debated and either attributed to an electric-field effect or to small leakage currents. Here we show that the suppression of superconductivity in titanium nitride nanowires on silicon substrates does not depend on the presence or absence of an electric field at the nanowire, but requires a current of high-energy electrons. The suppression is most efficient when electrons are injected into the nanowire, but similar results are obtained when electrons are passed between two remote electrodes. This is explained by the decay of high-energy electrons into phonons, which propagate through the substrate and affect superconductivity in the nanowire by generating quasiparticles. By studying the switching probability distribution of the nanowire, we also show that high-energy electron emission leads to a much broader phonon energy distribution compared with the case where superconductivity is suppressed by Joule heating near the nanowire

    High quality factor photonic cavity for dark matter axion searches

    Full text link
    Searches for dark matter axion involve the use of microwave resonant cavities operating in a strong magnetic field. Detector sensitivity is directly related to the cavity quality factor, which is limited, however, by the presence of the external magnetic field. In this paper we present a cavity of novel design whose quality factor is not affected by a magnetic field. It is based on a photonic structure by the use of sapphire rods. The quality factor at cryogenic temperature is in excess of 5×1055 \times 10^5 for a selected mode.Comment: 6 pages, 7 figure

    Search for galactic axions with a high-Q dielectric cavity

    Full text link
    A haloscope of the QUAX--aγa\gamma experiment, composed of an high-Q resonant cavity immersed in a 8 T magnet and cooled to ∼4.5\sim 4.5~K is operated to search for galactic axion with mass ma≃42.8 μeVm_a\simeq42.8~\mu\text{eV}. The design of the cavity with hollow dielectric cylinders concentrically inserted in a OFHC Cu cavity, allowed us to maintain a loaded quality-factor Q ∼300000\sim 300000 during the measurements in presence of magnetic field. Through the cavity tuning mechanism it was possible to modulate the resonance frequency of the haloscope in the region 10.35337−10.3534510.35337-10.35345~GHz and thus acquire different dataset at different resonance frequencies. Acquiring each dataset for about 50 minutes, combining them and correcting for the axion's signal estimation-efficiency we set a limit on the axion-photon coupling gaγγ<0.731×10−13g_{a\gamma\gamma}< 0.731\times10^{-13} GeV−1^{-1} with the confidence level set at 90%90\%

    Galactic axions search with a superconducting resonant cavity

    Full text link
    To account for the dark matter content in our Universe, post-inflationary scenarios predict for the QCD axion a mass in the range (10-10^3)\,\mu\mbox{eV}. Searches with haloscope experiments in this mass range require the monitoring of resonant cavity modes with frequency above 5\,GHz, where several experimental limitations occur due to linear amplifiers, small volumes, and low quality factors of Cu resonant cavities. In this paper we deal with the last issue, presenting the result of a search for galactic axions using a haloscope based on a 36\,\mbox{cm}^3 NbTi superconducting cavity. The cavity worked at T=4\,\mbox{K} in a 2\,T magnetic field and exhibited a quality factor Q0=4.5×105Q_0= 4.5\times10^5 for the TM010 mode at 9\,GHz. With such values of QQ the axion signal is significantly increased with respect to copper cavity haloscopes. Operating this setup we set the limit g_{a\gamma\gamma}<1.03\times10^{-12}\,\mbox{GeV}^{-1} on the axion photon coupling for a mass of about 37\,μ\mueV. A comprehensive study of the NbTi cavity at different magnetic fields, temperatures, and frequencies is also presented
    • …
    corecore