42 research outputs found

    Chemical Activation of the Hypoxia-Inducible Factor Reversibly Reduces Tendon Stem Cell Proliferation, Inhibits Their Differentiation, and Maintains Cell Undifferentiation

    Get PDF
    Adult stem cell-based therapeutic approaches for tissue regeneration have been proposed for several years. However, adult stem cells are usually limited in number and difficult to be expanded in vitro, and they usually tend to quickly lose their potency with passages, as they differentiate and become senescent. Culturing stem cells under reduced oxygen tensions (below 21%) has been proposed as a tool to increase cell proliferation, but many studies reported opposite effects. In particular, cell response to hypoxia seems to be very stem cell type specific. Nonetheless, it is clear that a major role in this process is played by the hypoxia inducible factor (HIF), the master regulator of cell response to oxygen deprivation, which affects cell metabolism and differentiation. Herein, we report that a chemical activation of HIF in human tendon stem cells reduces their proliferation and inhibits their differentiation in a reversible and dose-dependent manner. These results support the notion that hypoxia, by activating HIF, plays a crucial role in preserving stem cells in an undifferentiated state in the "hypoxic niches" present in the tissue in which they reside before migrating in more oxygenated areas to heal a damaged tissue

    GM1 Ganglioside Promotes Osteogenic Differentiation of Human Tendon Stem Cells

    Get PDF
    Gangliosides, the sialic acid-conjugated glycosphingolipids present in the lipid rafts, have been recognized as important regulators of cell proliferation, migration, and apoptosis. Due to their peculiar localization in the cell membrane, they modulate the activity of several key cell receptors, and increasing evidence supports their involvement also in stem cell differentiation. In this context, herein we report the role played by the ganglioside GM1 in the osteogenic differentiation of human tendon stem cells ( hTSCs). In particular, we found an increase of GM1 levels during osteogenesis that is instrumental for driving the process. In fact, supplementation of the ganglioside in the medium significantly increased the osteogenic differentiation capability of hTSCs. Mechanistically, we found that GM1 supplementation caused a reduction in the phosphorylation of the platelet-derived growth factor receptor-ss ( PDGFR-ss), which is a known inhibitor of osteogenic commitment. These results were further corroborated by the observation that GM1 supplementation was able to revert the inhibitory effects on osteogenesis when the process was inhibited with exogenous PDGF

    Lipogems product treatment increases the proliferation rate of human tendon stem cells without affecting their stemness and differentiation capability

    Get PDF
    Increasing the success rate of rotator cuff healing remains tremendous challenge. Among many approaches, the possibility of activating resident stem cells in situ, without the need to isolate them from biopsies, could represent valuable therapeutic strategy. Along this line, it has been recently demonstrated that lipoaspirate product, Lipogems, contains and produces growth-factors that may activate resident stem cells. In this study, human tendon stem cells (hTSCs) from the rotator cuff were cocultured in a transwell system with the Lipogems lipoaspirate product and compared to control untreated cells in terms of cell proliferation, morphology, stem cell marker and VEGF expression, and differentiation and migration capabilities. Results showed that the Lipogems product significantly increases the proliferation rate of hTSCs without altering their stemness and differentiation capability. Moreover, treated cells increase the expression of VEGF, which is crucial for the neovascularization of the tissue during the healing process. Overall, this study supports that directly activating hTSCs with the Lipogems lipoaspirate could represent a new practical therapeutic approach. In fact, obtaining a lipoaspirate is easier, safer, and more cost-effective than harvesting cells from tendon or bone marrow biopsies, expanding them in GMP facility and then reinjecting them in the patient

    Identification of New Hematopoietic Cell Subsets with a Polyclonal Antibody Library Specific for Neglected Proteins

    Get PDF
    The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs

    Fractional (s, p)-Robin–Venttsel’ problems on extension domains

    No full text
    We study a nonlocal Robin–Venttsel’-type problem for the regional fractional p-Laplacian in an extension domain Ω with boundary a d-set. We prove existence and uniqueness of a strong solution via a semigroup approach. Markovianity and ultracontractivity properties are proved. We then consider the elliptic problem. We prove existence, uniqueness and global boundedness of the weak solution

    Friedrichs inequality in irregular domains

    No full text
    We prove a generalized version of Friedrichs and Gaffney inequalities for a bounded (ε,δ) domain Ω⊂Rn, n=2,3, by adapting the methods of Jones to our framework

    Regularity results for nonlocal evolution Venttsel' problems

    No full text
    We consider parabolic nonlocal Venttsel' problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces

    Fractal mixtures for optimal heat draining

    No full text
    The aim of this paper is to optimize the shape of a highly conductive interface in order to drain the maximum amount of heat. Given the ubiquity of irregular interfaces in heat transmission processes, we model such interfaces by Koch-mixture fractal layers. We propose a dynamics that iteratively refines these mixtures in order to maximize the temperature reduction in the bulk. We obtain that asymmetric Koch-mixtures drain heat effectively when properly refined. In addition, we show that the conductivity of the interface plays a significant role in the refinement of the optimal shape
    corecore