80 research outputs found

    Tunable Wigner States with Dipolar Atoms and Molecules

    Full text link
    We study the few-body physics of trapped atoms or molecules with electric or magnetic dipole moments aligned by an external field. Using exact numerical diagonalization appropriate for the strongly correlated regime, as well as a classical analysis, we show how Wigner localization emerges with increasing coupling strength. The Wigner states exhibit non-trivial geometries due to the anisotropy of the interaction. This leads to transitions between different Wigner states as the tilt angle of the dipoles with the confining plane is changed. Intriguingly, while the individual Wigner states are well described by a classical analysis, the transitions between different Wigner states are strongly affected by quantum statistics. This can be understood by considering the interplay between quantum-mechanical and spatial symmetry properties. Finally, we demonstrate that our results are relevant to experimentally realistic systems.Comment: 4 pages, 6 figure

    Vortices in Bose-Einstein condensates - finite-size effects and the thermodynamic limit

    Full text link
    For a weakly-interacting Bose gas rotating in a harmonic trap we relate the yrast states of small systems (that can be treated exactly) to the thermodynamic limit (derived within the mean-field approximation). For a few dozens of atoms, the yrast line shows distinct quasi-periodic oscillations with increasing angular momentum that originate from the internal structure of the exact many-body states. These finite-size effects disappear in the thermodynamic limit, where the Gross-Pitaevskii approximation provides the exact energy to leading order in the number of particles N. However, the exact yrast states reveal significant structure not captured by the mean-field approximation: Even in the limit of large N, the corresponding mean-field solution accounts for only a fraction of the total weight of the exact quantum state.Comment: Phys Rev A, in pres

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Transport and interaction blockade of cold bosonic atoms in a triple-well potential

    Full text link
    We theoretically investigate the transport properties of cold bosonic atoms in a quasi one-dimensional triple-well potential that consists of two large outer wells, which act as microscopic source and drain reservoirs, and a small inner well, which represents a quantum-dot-like scattering region. Bias and gate "voltages" introduce a time-dependent tilt of the triple-well configuration, and are used to shift the energetic level of the inner well with respect to the outer ones. By means of exact diagonalization considering a total number of six atoms in the triple-well potential, we find diamond-like structures for the occurrence of single-atom transport in the parameter space spanned by the bias and gate voltages. We discuss the analogy with Coulomb blockade in electronic quantum dots, and point out how one can infer the interaction energy in the central well from the distance between the diamonds.Comment: 18 pages, 6 figure

    Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

    Full text link
    When a Bose-Einstein condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean-field. Considering a weakly-interacting Bose-Einstein condensate of harmonically-trapped atoms, we demonstrate how this separation can be used to close the conceptual gap between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean-field is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions, it is expected to be more generally valid.Comment: 8 pages, 5 figure

    Spin-orbit-enhanced Wigner localization in quantum dots

    Full text link
    We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum dots. Recurring shapes in the pair-correlated densities of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported.Comment: 5 pages, 4 figure

    Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension

    Full text link
    For a system with interacting quantum mechanical particles in a one-dimensional harmonic oscillator, a trial wavefunction with simple structure based on the solution of the corresponding two-particle system is suggested and tested numerically. With the inclusion of a scaling parameter for the distance between particles, at least for the very small systems tested here the ansatz gives a very good estimate of the ground state energy, with the error being of the order of ~1% of the gap to the first excited state

    Signatures of Wigner Localization in Epitaxially Grown Nanowires

    Full text link
    It was predicted by Wigner in 1934 that the electron gas will undergo a transition to a crystallized state when its density is very low. Whereas significant progress has been made towards the detection of electronic Wigner states, their clear and direct experimental verification still remains a challenge. Here we address signatures of Wigner molecule formation in the transport properties of InSb nanowire quantum dot systems, where a few electrons may form localized states depending on the size of the dot (i.e. the electron density). By a configuration interaction approach combined with an appropriate transport formalism, we are able to predict the transport properties of these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of Wigner localization, both experimentally and theoretically, by studying different dot sizes.Comment: 4 pages, 4 figure

    Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

    Get PDF
    Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well
    • …
    corecore