12 research outputs found

    Epigenetic control of nuclear architecture

    Get PDF
    The cell nucleus is a highly structured compartment where nuclear components are thought to localize in non-random positions. Correct positioning of large chromatin domains may have a direct impact on the localization of other nuclear components, and can therefore influence the global functionality of the nuclear compartment. DNA methylation of cytosine residues in CpG dinucleotides is a prominent epigenetic modification of the chromatin fiber. DNA methylation, in conjunction with the biochemical modification pattern of histone tails, is known to lock chromatin in a close and transcriptionally inactive conformation. The relationship between DNA methylation and large-scale organization of nuclear architecture, however, is poorly understood. Here we briefly summarize present concepts of nuclear architecture and current data supporting a link between DNA methylation and the maintenance of large-scale nuclear organization

    Quantum chemical studies of protein structure

    No full text
    Quantum chemical methods now permit the prediction of many spectroscopic observables in proteins and related model systems, in addition to electrostatic properties, which are found to be in excellent accord with those determined from experiment. I discuss the developments over the past decade in these areas, including predictions of nuclear magnetic resonance chemical shifts, chemical shielding tensors, scalar couplings and hyperfine (contact) shifts, the isomer shifts and quadrupole splittings in Mössbauer spectroscopy, molecular energies and conformations, as well as a range of electrostatic properties, such as charge densities, the curvatures, Laplacians and Hessians of the charge density, electrostatic potentials, electric field gradients and electrostatic field effects. The availability of structure/spectroscopic correlations from quantum chemistry provides a basis for using numerous spectroscopic observables in determining aspects of protein structure, in determining electrostatic properties which are not readily accessible from experiment, as well as giving additional confidence in the use of these techniques to investigate questions about chemical bonding and chemical reactions

    De Novo Mutations in CHAMP1 Cause Intellectual Disability with Severe Speech Impairment

    No full text
    Item does not contain fulltextCHAMP1 encodes a protein with a function in kinetochore-microtubule attachment and in the regulation of chromosome segregation, both of which are known to be important for neurodevelopment. By trio whole-exome sequencing, we have identified de novo deleterious mutations in CHAMP1 in five unrelated individuals affected by intellectual disability with severe speech impairment, motor developmental delay, muscular hypotonia, and similar dysmorphic features including short philtrum and a tented upper and everted lover lip. In addition to two frameshift and one nonsense mutations, we found an identical nonsense mutation, c.1192C>T (p.Arg398( *)), in two affected individuals. All mutations, if resulting in a stable protein, are predicted to lead to the loss of the functionally important zinc-finger domains in the C terminus of the protein, which regulate CHAMP1 localization to chromosomes and the mitotic spindle, thereby providing a mechanistic understanding for their pathogenicity. We thus establish deleterious de novo mutations in CHAMP1 as a cause of intellectual disability

    Renin-Angiotensin System Inhibitors in Patients With COVID-19: A Meta-Analysis of Randomized Controlled Trials Led by the International Society of Hypertension

    No full text
    Background Published randomized controlled trials are underpowered for binary clinical end points to assess the safety and efficacy of renin-angiotensin system inhibitors (RASi) in adults with COVID-19. We therefore performed a meta-analysis to assess the safety and efficacy of RASi in adults with COVID-19. Methods and Results MEDLINE, EMBASE, ClinicalTrials.gov, and the Cochrane Controlled Trial Register were searched for randomized controlled trials that randomly assigned patients with COVID-19 to RASi continuation/commencement versus no RASi therapy. The primary outcome was all-cause mortality at ≤30 days. A total of 14 randomized controlled trials met the inclusion criteria and enrolled 1838 participants (aged 59 years, 58% men, mean follow-up 26 days). Of the trials, 11 contributed data. We found no effect of RASi versus control on all-cause mortality (7.2% versus 7.5%; relative risk [RR], 0.95; [95% CI, 0.69-1.30]) either overall or in subgroups defined by COVID-19 severity or trial type. Network meta-analysis identified no difference between angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers. RASi users had a nonsignificant reduction in acute myocardial infarction (2.1% versus 3.6%; RR, 0.59; [95% CI, 0.33-1.06]), but increased risk of acute kidney injury (7.0% versus 3.6%; RR, 1.82; [95% CI, 1.05-3.16]), in trials that initiated and continued RASi. There was no increase in need for dialysis or differences in congestive cardiac failure, cerebrovascular events, venous thromboembolism, hospitalization, intensive care admission, inotropes, or mechanical ventilation. Conclusions This meta-analysis of randomized controlled trials evaluating angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers versus control in patients with COVID-19 found no difference in all-cause mortality, a borderline decrease in myocardial infarction, and an increased risk of acute kidney injury with RASi. Our findings provide strong evidence that RASi can be used safely in patients with COVID-19

    The Double-Edged Flower: Roles of Complement Protein C1q in Neurodegenerative Diseases

    No full text

    Vanadium and Oxidative Stress Markers - In Vivo Model: A Review

    No full text
    corecore