6 research outputs found

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Effect of membrane permeability on survival of hemodialysis patients.

    No full text
    The effect of high-flux hemodialysis membranes on patient survival has not been unequivocally determined. In this prospective, randomized clinical trial, we enrolled 738 incident hemodialysis patients, stratified them by serum albumin 4 g/dl, and assigned them to either low-flux or high-flux membranes. We followed patients for 3 to 7.5 yr. Kaplan-Meier survival analysis showed no significant difference between high-flux and low-flux membranes, and a Cox proportional hazards model concurred. Patients with serum albumin < or = 4 g/dl had significantly higher survival rates in the high-flux group compared with the low-flux group (P = 0.032). In addition, a secondary analysis revealed that high-flux membranes may significantly improve survival of patients with diabetes. Among those with serum albumin < or = 4 g/dl, slightly different effects among patients with and without diabetes suggested a potential interaction between diabetes status and low serum albumin in the reduction of risk conferred by high-flux membranes. In summary, we did not detect a significant survival benefit with either high-flux or low-flux membranes in the population overall, but the use of high-flux membranes conferred a significant survival benefit among patients with serum albumin < or = 4 g/dl. The apparent survival benefit among patients who have diabetes and are treated with high-flux membranes requires confirmation given the post hoc nature of our analysis

    Geographical variability of patient characteristics and treatment patterns affect outcomes for incident hemodialysis patients

    No full text
    Background: Geographical differences in disease prevalence and mortality have been described in the general population and in chronic kidney disease patients in Europe. In this secondary analysis of the Membrane Permeability Outcome (MPO) study, we addressed differences in patient and treatment patterns, and whether these affect patient outcomes. Methods: Participating countries were grouped according to geographical location; thus study centers in France, Greece, Italy, Portugal and Spain were allocated to southern Europe (n=499), and those in all other countries (Belgium, Germany, Poland and Sweden) to northern Europe (n=148). Descriptive analysis of patient and treatment patterns at study start, as well as survival analysis, was performed. Results: In patients from the northern European countries, a higher prevalence of diabetes mellitus and of cardiovascular disease was observed than in those from southern Europe (diabetes 35.1% vs. 21.0%, p=0.0007; cardiovascular disease 40.5% vs. 22.8%, p&lt;0.0001). In northern Europe, 23% of patients started hemodialysis with a catheter for vascular access, while in southern European centers, only 13% did so (p=0.0042). Kaplan-Meier survival analysis revealed a lower probability for both all-cause and cardiovascular mortality in southern Europe (log-rank test p&lt;0.001). In a Cox proportional hazards model, a higher mortality risk was estimated for the northern European patients after adjustment for age, sex, membrane permeability, comorbidity index and vascular access (hazard ratio = 1.831; 95% confidence interval, 1.282-2.615; p=0.0009). Conclusions: Our study patients from northern Europe showed a higher risk profile than those from southern Europe. However, only some of the factors can be modified in attempts to lower the mortality risk in this geographical area

    Mortality reduction by post-dilution online-haemodiafiltration : A cause-specific analysis

    No full text
    Background. From an individual participant data (IPD) meta-analysis from four randomized controlled trials comparing haemodialysis (HD) with post-dilution online-haemodiafiltration (ol-HDF), previously it appeared that HDF decreases all-cause mortality by 14% (95% confidence interval 25; 1) and fatal cardiovascular disease (CVD) by 23% (39; 3). Significant differences were not found for fatal infections and sudden death. So far, it is unclear, however, whether the reduced mortality risk of HDF is only due to a decrease in CVD events and if so, which CVD in particular is prevented, if compared with HD. Methods. The IPD base was used for the present study. Hazard ratios and 95% confidence intervals for cause-specific mortality overall and in thirds of the convection volume were calculated using the Cox proportional hazard regression models. Annualized mortality and numbers needed to treat (NNT) were calculated as well. Results. Besides 554 patients dying from CVD, fatal infections and sudden death, 215 participants died from 'other causes', such as withdrawal from treatment and malignancies. In this group, the mortality risk was comparable between HD and ol-HDF patients, both overall and in thirds of the convection volume. Subdivision of CVD mortality in fatal cardiac, non-cardiac and unclassified CVD showed that ol-HDF was only associated with a lower risk of cardiac casualties [0.64 (0.61; 0.90)]. Annual mortality rates also suggest that the reduction in CVD death is mainly due to a decrease in cardiac fatalities, including both ischaemic heart disease and congestion. Overall, 32 and 75 patients, respectively, need to be treated by high-volume HDF (HV-HDF) to prevent one all-cause and one CVD death, respectively, per year. Conclusion. The beneficial effect of ol-HDF on all-cause and CVD mortality appears to be mainly due to a reduction in fatal cardiac events, including ischaemic heart disease as well as congestion. In HV-HDF, the NNT to prevent one CVD death is 75 per year

    Mortality reduction by post-dilution online-haemodiafiltration : A cause-specific analysis

    No full text
    Background. From an individual participant data (IPD) meta-analysis from four randomized controlled trials comparing haemodialysis (HD) with post-dilution online-haemodiafiltration (ol-HDF), previously it appeared that HDF decreases all-cause mortality by 14% (95% confidence interval 25; 1) and fatal cardiovascular disease (CVD) by 23% (39; 3). Significant differences were not found for fatal infections and sudden death. So far, it is unclear, however, whether the reduced mortality risk of HDF is only due to a decrease in CVD events and if so, which CVD in particular is prevented, if compared with HD. Methods. The IPD base was used for the present study. Hazard ratios and 95% confidence intervals for cause-specific mortality overall and in thirds of the convection volume were calculated using the Cox proportional hazard regression models. Annualized mortality and numbers needed to treat (NNT) were calculated as well. Results. Besides 554 patients dying from CVD, fatal infections and sudden death, 215 participants died from 'other causes', such as withdrawal from treatment and malignancies. In this group, the mortality risk was comparable between HD and ol-HDF patients, both overall and in thirds of the convection volume. Subdivision of CVD mortality in fatal cardiac, non-cardiac and unclassified CVD showed that ol-HDF was only associated with a lower risk of cardiac casualties [0.64 (0.61; 0.90)]. Annual mortality rates also suggest that the reduction in CVD death is mainly due to a decrease in cardiac fatalities, including both ischaemic heart disease and congestion. Overall, 32 and 75 patients, respectively, need to be treated by high-volume HDF (HV-HDF) to prevent one all-cause and one CVD death, respectively, per year. Conclusion. The beneficial effect of ol-HDF on all-cause and CVD mortality appears to be mainly due to a reduction in fatal cardiac events, including ischaemic heart disease as well as congestion. In HV-HDF, the NNT to prevent one CVD death is 75 per year
    corecore