19 research outputs found
Desorption From Interstellar Ices
The desorption of molecular species from ice mantles back into the gas phase
in molecular clouds results from a variety of very poorly understood processes.
We have investigated three mechanisms; desorption resulting from H_2 formation
on grains, direct cosmic ray heating and cosmic ray induced photodesorption.
Whilst qualitative differences exist between these processes (essentially
deriving from the assumptions concerning the species-selectivity of the
desorption and the assumed threshold adsorption energies, E_t) all three
processes are found to be potentially very significant in dark cloud
conditions. It is therefore important that all three mechanisms should be
considered in studies of molecular clouds in which freeze-out and desorption
are believed to be important.
Employing a chemical model of a typical static molecular core and using
likely estimates for the quantum yields of the three processes we find that
desorption by H_2 formation probably dominates over the other two mechanisms.
However, the physics of the desorption processes and the nature of the dust
grains and ice mantles are very poorly constrained. We therefore conclude that
the best approach is to set empirical constraints on the desorption, based on
observed molecular depletions - rather than try to establish the desorption
efficiencies from purely theoretical considerations. Applying this method to
one such object (L1689B) yields upper limits to the desorption efficiencies
that are consistent with our understanding of these mechanisms.Comment: 11 pages, 5 figures, accepted by MNRAS subject to minor revision
which has been carried ou
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
The adsorption of CO on the stepped Pt{211} surface: a comparison of theory and experiment
Experimental measurements and DFT calculations reveal that, as expected, CO adsorbs most strongly at the step edge of Pt{211}, with similar adsorption energies for bridged and atop CO on the step. Terrace sites are significantly less stable. In the light of our results, we attempt to provide explanations for previous disagreement between experiment and theory
Recommended from our members
Effect of oxygen adsorption on the chiral pt{531} surface
The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K