31 research outputs found
Histochemical demonstration of endothelial superoxide and hydrogen peroxide generation in ischemic and reoxygenated rat tissues
Objective: The aims were to test and evaluate two novel and independent histochemical methods for detecting the initial postischemic burst of superoxide and hydrogen peroxide in buffer perfused rat tissues during reflow after 60 min warm ischemia. Methods: The first is a high manganese/diaminobenzidine technique, in which superoxide oxidises Mn2+ to Mn3+, which in turn oxidizes diaminobenzidine to form amber colored polymers, observable by light microscopy. The second is a high iron/diaminobenzidine technique, in which hydrogen peroxide oxidizes diethylenetriaminepenta-acetate chelated Fe2+ to form intermediate species, which in turn oxidize diaminobenzidine similarly to Mn3+. Various isolated organs of the rat were rendered ischemic for 60 min, and reperfused with oxygen or air equilibrated buffers containing diaminobenzidine and either Mn2+ or Fe2+. Tissues were fixed by perfusion with Trump’s solution and processed for light microscopy. Results: Both manganese and iron methods consistently showed the appearance of reaction product on the luminal surfaces of arterial, capillary, and venular endothelial cells in lung, heart, and intestine of the rat during the first 2 to 3 min of reoxygenation after ischemia. The histochemical reactions were nearly absent in non-manganese treated and non-iron-treated controls. Superoxide dismutase strongly inhibited Mn2+/diaminobenzidine reaction product formation and catalase strongly inhibited Fe2+/diaminobenzidine reaction product formation, when tested in specially perfused lung preparations in which these specific antioxidant enzymes were concentrated. Conclusions: These histochemical techniques provide direct, visual evidence that a burst of reactive oxygen species is generated in postischemic rat tissues. The Mn2+/diaminobenzidine and Fe2+/diaminobenzidine techniques permit investigation of the endothelium derived reactive oxygen by simple laboratory procedures available to almost any investigator at low marginal cost. The endothelial oxidants so revealed may be of pathophysiological significance in a variety of cardiovascular disorders
Glucocorticoid-Induced Bone Fragility Is Prevented in Female Mice by Blocking Pyk2/Anoikis Signaling
Excess of glucocorticoids (GCs) is a leading cause of bone fragility, and therapeutic targets are sorely needed. We report that genetic deletion or pharmacological inhibition of proline-rich tyrosine kinase 2 (Pyk2) prevents GC-induced bone loss by overriding GC effects of detachment-induced bone cell apoptosis (anoikis). In wild-type or vehicle-treated mice, GCs either prevented osteoclast apoptosis or promoted osteoblast/osteocyte apoptosis. In contrast, mice lacking Pyk2 [knockout (KO)] or treated with Pyk2 kinase inhibitor PF-431396 (PF) were protected. KO or PF-treated mice were also protected from GC-induced bone resorption, microarchitecture deterioration, and weakening of biomechanical properties. In KO and PF-treated mice, GC increased osteoclasts in bone and circulating tartrate-resistant acid phosphatase form 5b, an index of osteoclast number. However, bone surfaces covered by osteoclasts and circulating C-terminal telopeptides of type I collagen, an index of osteoclast function, were not increased. The mismatch between osteoclast number vs function induced by Pyk2 deficiency/inhibition was due to osteoclast detachment and anoikis. Further, GC prolongation of osteoclast lifespan was absent in KO and PF-treated osteoclasts, demonstrating Pyk2 as an intrinsic osteoclast-survival regulator. Circumventing Pyk2 activation preserves skeletal integrity by preventing GC effects on bone cell survival (proapoptotic for osteoblasts/osteocytes, antiapoptotic for osteoclasts) and GC-induced bone resorption. Thus, Pyk2/anoikis signaling as a therapeutic target for GC-induced osteoporosis
Genetic Deletion of Sost or Pharmacological Inhibition of Sclerostin Prevent Multiple Myeloma-induced Bone Disease without Affecting Tumor Growth
Multiple myeloma (MM) causes lytic bone lesions due to increased bone
resorption and concomitant marked suppression of bone formation. Sclerostin
(Scl) levels, an osteocyte-derived inhibitor of Wnt/β-catenin signaling,
are elevated in MM patient sera and are increased in osteocytes in MM-bearing
mice. We show here that genetic deletion of Sost, the gene encoding Scl,
prevented MM-induced bone disease in an immune-deficient mouse model of early
MM, and that administration of anti-Scl antibody (Scl-Ab) increased bone mass
and decreases osteolysis in immune-competent mice with established MM. Sost/Scl
inhibition increased osteoblast numbers, stimulated new bone formation and
decreased osteoclast number in MM-colonized bone. Further, Sost/Scl inhibition
did not affect tumor growth in vivo or anti-myeloma drug
efficacy in vitro. These results identify the osteocyte as a
major contributor to the deleterious effects of MM in bone and osteocyte-derived
Scl as a promising target for the treatment of established MM-induced bone
disease. Further, Scl did not interfere with efficacy of chemotherapy for MM
suggesting that combined treatment with anti-myeloma drugs and Scl-Ab should
effectively control MM growth and bone disease, providing new avenues to
effectively control MM and bone disease in patients with active MM
Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age
Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner
Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin
Excess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/β-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β-catenin signaling
Bidirectional Notch signaling and osteocyte-derived factors in the bone marrow microenvironment promote tumor cell proliferation and bone destruction in multiple myeloma
In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma
Skeletal Protection and Promotion of Microbiome Diversity by Dietary Boosting of the Endogenous Antioxidant Response
There is an unmet need for interventions with better compliance that prevent the adverse effects of sex steroid deficiency on the musculoskeletal system. We identified a blueberry cultivar (Montgomerym [Mont]) that added to the diet protects female mice from musculoskeletal loss and body weight changes induced by ovariectomy. Mont, but not other blueberries, increased the endogenous antioxidant response by bypassing the traditional antioxidant transcription factor Nrf2 and without activating estrogen receptor canonical signaling. Remarkably, Mont did not protect the male skeleton from androgen-induced bone loss. Moreover, Mont increased the variety of bacterial communities in the gut microbiome (α-diversity) more in female than in male mice; shifted the phylogenetic relatedness of bacterial communities (β-diversity) further in females than males; and increased the prevalence of the taxon Ruminococcus1 in females but not males. Therefore, this nonpharmacologic intervention (i) protects from estrogen but not androgen deficiency; (ii) preserves bone, skeletal muscle, and body composition; (iii) elicits antioxidant defense responses independently of classical antioxidant/estrogenic signaling; and (iv) increases gut microbiome diversity toward a healthier signature. These findings highlight the impact of nutrition on musculoskeletal and gut microbiome homeostasis and support the precision medicine principle of tailoring dietary interventions to patient individualities, like sex.Fil: Sato, Amy Y.. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: Pellegrini, Gretel Gisela. Indiana University. School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de InmunologÃa, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de InmunologÃa, Genética y Metabolismo; ArgentinaFil: Cregor, Meloney. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados UnidosFil: McAndrews, Kevin. Indiana University. School of Medicine; Estados UnidosFil: Choi, Roy B. Indiana University. School of Medicine; Estados UnidosFil: Maiz, Maria. Purdue University; Estados UnidosFil: Johnson, Olivia. Indiana University. School of Medicine; Estados UnidosFil: McCabe, Linda D.. Purdue University; Estados UnidosFil: McCabe, George P.. Purdue University; Estados UnidosFil: Ferruzzi, Mario G.. North Carolina State University; Estados UnidosFil: Lila, Mary Ann. North Carolina State University; Estados UnidosFil: Peacock, Munro. Indiana University. School of Medicine; Estados UnidosFil: Burr, David B.. Indiana University. School of Medicine; Estados UnidosFil: Nakatsu, Cindy H.. Purdue University; Estados UnidosFil: Weaver, Connie M.. Purdue University; Estados UnidosFil: Bellido, Teresita. University of Arkansas for Medical Sciences; Estados Unidos. Indiana University. School of Medicine; Estados Unido
Glucocorticoid-Induced Bone Fragility Is Prevented in Female Mice by Blocking Pyk2/Anoikis Signaling
Excess of glucocorticoids (GCs) is a leading cause of bone fragility, and therapeutic targets are sorely needed. We report that genetic deletion or pharmacological inhibition of proline-rich tyrosine kinase 2 (Pyk2) prevents GC-induced bone loss by overriding GC effects of detachment-induced bone cell apoptosis (anoikis). In wild-type or vehicle-treated mice, GCs either prevented osteoclast apoptosis or promoted osteoblast/osteocyte apoptosis. In contrast, mice lacking Pyk2 [knockout (KO)] or treated with Pyk2 kinase inhibitor PF-431396 (PF) were protected. KO or PF-treated mice were also protected from GC-induced bone resorption, microarchitecture deterioration, and weakening of biomechanical properties. In KO and PF-treated mice, GC increased osteoclasts in bone and circulating tartrate-resistant acid phosphatase form 5b, an index of osteoclast number. However, bone surfaces covered by osteoclasts and circulating C-terminal telopeptides of type I collagen, an index of osteoclast function, were not increased. The mismatch between osteoclast number vs function induced by Pyk2 deficiency/inhibition was due to osteoclast detachment and anoikis. Further, GC prolongation of osteoclast lifespan was absent in KO and PF-treated osteoclasts, demonstrating Pyk2 as an intrinsic osteoclast-survival regulator. Circumventing Pyk2 activation preserves skeletal integrity by preventing GC effects on bone cell survival (proapoptotic for osteoblasts/osteocytes, antiapoptotic for osteoclasts) and GC-induced bone resorption. Thus, Pyk2/anoikis signaling as a therapeutic target for GC-induced osteoporosis
Bone-derived Sclerostin Regulates Glucose Metabolism Via Endocrine Actions in Pancreatic β- cells
Osteocyte (Ot)-derived Sclerostin (Scl), encoded by the SOST gene, regulates bone homeostasis by acting on osteoblasts, inhibiting bone formation and stimulating bone resorption. Emerging evidence suggest that Scl has additional functions in the regulation of glucose metabolism and fat mass. However, the data available is limited and contradictory, and the cellular and molecular mechanisms by which Scl regulates whole-body energy metabolism remain unclear. In this study, we hypothesize that Ots, through the secretion of Scl, communicate with pancreatic beta-cells to regulate glucose metabolism. We first examined glucose metabolism in mice with constitutive activation of beta-catenin in Ots, a mouse model characterized by high levels of Scl in bone and serum. daβcatOt mice exhibited a decrease in fasted blood glucose levels, impaired glucose tolerance response, and increased sensitivity to exogenous insulin administration. To determine the contribution of SOST/Scl to the altered glucose metabolism exhibited by daβcatOt mice, we next generated daβcatOt mice with global deletion of SOST (daβcatOt;SOSTKO), along with SOSTKO, daβcatOt, and control littermate mice. SOSTKO mice exhibited increased fasted glucose levels and improvement in glucose handling with no changes in the response to exogenous insulin. daβcatOt mice displayed the expected low glucose levels and impaired glucose metabolism. Importantly, genetic deletion of SOST in daβcatOt mice restored fasted glucose levels, glucose tolerance, and insulin sensitivity back to the levels of control mice, supporting the notion that Scl contributes to the regulation of glucose metabolism. Further, we found in vitro that treatment with Scl decreases viability and insulin mRNA gene expression in pancreatic beta-cells. Altogether, these results suggest that endocrine actions of Scl mediate the crosstalk between bone and pancreas and regulate glucose metabolism through direct actions in pancreatic beta-cells
Protection From Glucocorticoid-Induced Osteoporosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin
Excess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β-catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β-catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild-type (WT), but not in Sost-/- mice. The high bone mass exhibited by Sost-/- mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost-/- mice was due to prevention of glucocorticoid-induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin-positive osteocytes, and altered the molecular signature of the Wnt/β-catenin pathway by decreasing the expression of genes associated with both anti-catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost-/- mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β-catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β-catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β-catenin signaling