6 research outputs found

    Exact interval propagation for the efficient solution of planar linkages

    Get PDF
    This paper presents an interval propagation algorithm for variables in single-loop linkages. Given allowed intervals of values for all variables, the algorithm provides, for every variable, the exact interval of values for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and bound search scheme, in order to solve the position analysis of general multi-loop linkages. Experimental results are included, comparing the method’s performance with that of previous techniques given for the same task.Peer Reviewe

    Exact interval propagation for the efficient solution of position analysis problems on planar linkages

    Get PDF
    This paper presents an interval propagation algorithm for variables in planar single-loop linkages. Given intervals of allowed values for all variables, the algorithm provides, for every variable, the whole set of values, with out over-estimation, for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and-prune search scheme, in order to solve the position analysis of general planar multi-loop linkages. Experimental results are included, comparing the method’s perfor mance with that of previous techniques given for the same task.Peer ReviewedPostprint (author's final draft

    Exact interval propagation for the efficient solution of planar linkages

    No full text
    This paper presents an interval propagation algorithm for variables in single-loop linkages. Given allowed intervals of values for all variables, the algorithm provides, for every variable, the exact interval of values for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and bound search scheme, in order to solve the position analysis of general multi-loop linkages. Experimental results are included, comparing the method’s performance with that of previous techniques given for the same task.Peer Reviewe

    Exact interval propagation for the efficient solution of planar linkages

    No full text
    This paper presents an interval propagation algorithm for variables in single-loop linkages. Given allowed intervals of values for all variables, the algorithm provides, for every variable, the exact interval of values for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and bound search scheme, in order to solve the position analysis of general multi-loop linkages. Experimental results are included, comparing the method’s performance with that of previous techniques given for the same task.Peer Reviewe

    Exact interval propagation for the efficient solution of position analysis problems on planar linkages

    No full text
    This paper presents an interval propagation algorithm for variables in planar single-loop linkages. Given intervals of allowed values for all variables, the algorithm provides, for every variable, the whole set of values, with out over-estimation, for which the linkage can actually be assembled. We show further how this algorithm can be integrated in a branch-and-prune search scheme, in order to solve the position analysis of general planar multi-loop linkages. Experimental results are included, comparing the method’s perfor mance with that of previous techniques given for the same task.Peer Reviewe

    Box approximations of planar linkage configuration spaces

    No full text
    This paper presents a numerical method able to compute all possible configurations of planar linkages. The procedure is applicable to rigid linkages (i.e., those that can only adopt a finite number of configurations) and to mobile ones (i.e., those that exhibit a continuum of possible configurations). The method is based on the fact that this problem can be reduced to finding the roots of a polynomial system of linear, quadratic, and hyperbolic equations, which is here tackled with a new strategy exploiting its structure. The method is conceptually simple and easy to implement, yet it provides solutions of the desired accuracy in short computation times. Experiments are included that show its performance on the double butterfly linkage and on larger linkages formed by the concatenation of basic patterns.Peer Reviewe
    corecore