36 research outputs found

    What does security culture look like for small organizations?

    No full text
    The human component is a significant factor in information security, with a large numbers of breaches occurring due to unintentional user error. Technical solutions can only protect information so far and thus the human aspect of security has become a major focus for discussion. Therefore, it is important for organisations to create a security conscious culture. However, currently there is no established representation of security culture from which to assess how it can be manoeuvred to improve the overall information security of an organization. This is of particular importance for small organizations who lack the resources in information security and for whom the culture of the organization exerts a strong influence. A review of multiple definitions and descriptions of security culture was made to assess and analyse the drivers and influences that exist for security culture in small organizations. An initial representation of the factors that should drive security culture, together with those that should only influence it, was constructed. At a fundamental level these drivers are related to a formulated response to security issues rather than a reaction to it, and should reflect the responsibility allocated in a secure environment. In contrast, the influences on security culture can be grouped by communities of practice, individual awareness and organizational management. The encapsulation of potential driving and influencing factors couched in information security terms rather than behavioural science terms, will allow security researchers to investigate how a security culture can be fostered to improve information security in small organizations

    20 Years Experience of TNF-Based Isolated Limb Perfusion for In-Transit Melanoma Metastases: TNF Dose Matters

    Get PDF
    Background: Approximately 5-8% of melanoma patients will develop in-transit metastases (IT-mets). Tumor necrosis factor-α (TNF) and melphalan-based isolated limb perfusion (TM-ILP) is an attractive treatment modality in melanoma patients with multiple IT-mets. This study reports on a 20 years experience and outlines the evolution and major changes since the introduction of TNF in ILP. Methods: A total of 167 TM-ILPs were performed in 148 patients, between 1991 and 2009. TM-ILPs were performed at high doses of TNF (3-4 mg) from 1991 to 2004 (n = 99) and at low doses of TNF (1-2 mg) from 2004 to 2009 (n = 68) under mild hyperthermic conditions (38°C-39.5°C.). Melphalan doses were unchanged at 10-13 mg/l (leg and arm, respectively). Characteristics for the 167 ILPs were

    Estimating loss of Brucella abortus antibodies from age-specific serological data in elk

    Get PDF
    Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended
    corecore