53 research outputs found

    A 7-year follow-up of sacral anterior root stimulation for bladder control in patients with a spinal cord injury: quality of life and users' experiences\ud

    Get PDF
    Study design: Cross-sectional descriptive study.\ud \ud Objectives: To assess long-term effects and quality of life (QoL) of using sacral anterior root stimulation (SARS) in spinal cord injured patients.\ud \ud Setting: Neurosurgical and Urological Departments of a large teaching hospital and a large rehabilitation centre in the Netherlands.\ud \ud Methods: In all, 42 patients with complete spinal cord injury (SCI) implanted between 1987 and 2000 were included. A questionnaire was constructed to determine complications, technical failures and personal experiences of the patients. The Qualiveen questionnaire was used and the outcome was compared with data obtained from a reference group of 400 SCI patients with neurogenic bladder problems not using the bladder controller. The Qualiveen questionnaire measures disease-specific aspects in four domains with respect to limitations, constraints, fears and feelings and general QoL aspects, suitable for use in SCI patients with urinary disorders.\ud \ud Results: The results of 37 patients are presented. Our results with the bladder controller with respect to medical and technical complications and infection rates are similar to the results presented by others. From users' experiences, the most important advantages reported were a decreased infection rate (68%), improved social life (54%) and continence (54%). Comparison of the obtained results of our patient group with the Qualiveen questionnaire with a reference group not using the bladder controller indicates that the specific impact of urinary disorders in the four domains on QoL is reduced and that general QoL is improved.\ud \ud Conclusion: SARS is effective and safe for neurogenic bladder management in patients with complete SCI. Users' experiences are positive. Furthermore, this therapy seems to reduce the effects of urinary-disorder-specific QoL aspects, and to increase the QoL in general\u

    Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins

    Get PDF
    We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation

    Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments

    Get PDF
    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design

    Structure of Tumour Necrosis Factor.

    No full text
    Tumour necrosis factor is a trimeric molecule, each subunit of which consists of an antiparallel beta-sandwich. Individual subunits from the trimer by a novel edge-to-face packing of beta-sheets. A comparison of the subunit fold with that of other proteins reveals a remarkable similarity to the 'jelly-roll' structural motif characteristic of viral coat proteins
    • ā€¦
    corecore