110 research outputs found

    A note on the Hybrid Soil Moisture Deficit Model v2.0

    Get PDF
    peer-reviewedThe Hybrid Soil Moisture Deficit (HSMD) model has been used for a wide range of applications, including modelling of grassland productivity and utilisation, assessment of agricultural management opportunities such as slurry spreading, predicting nutrient emissions to the environment and risks of pathogen transfer to water. In the decade since its publication, various ad hoc modifications have been developed and the recent publication of the Irish Soil Information System has facilitated improved assessment of the spatial soil moisture dynamics. In this short note, we formally present a new version of the model (HSMD2.0), which includes two new soil drainage classes, as well as an optional module to account for the topographic wetness index at any location. In addition, we present a new Indicative Soil Drainage Map for Ireland, based on the Irish Soil Classification system, developed as part of the Irish Soil Information System

    Pedotransfer functions for Irish soils – estimation of bulk density (ρb) per horizon type

    Get PDF
    This work was conducted as part of the Irish Soil Information System Project, managed by Teagasc (the Irish Agriculture and Food Development Authority) and co-funded by the Environmental Protection Agency (EPA) of Ireland through their Science, Technology, Research and Innovation for the Environment (STRIVE) Programme, as part of the National Development Plan 2007–2013.peer-reviewedSoil bulk density is a key property in defining soil characteristics. It describes the packing structure of the soil and is also essential for the measurement of soil carbon stock and nutrient assessment. In many older surveys this property was neglected and in many modern surveys this property is omitted due to cost both in laboratory and labour and in cases where the core method cannot be applied. To overcome these oversights pedotransfer functions are applied using other known soil properties to estimate bulk density. Pedotransfer functions have been derived from large international data sets across many studies, with their own inherent biases, many ignoring horizonation and depth variances. Initially pedotransfer functions from the literature were used to predict different horizon type bulk densities using local known bulk density data sets. Then the best performing of the pedotransfer functions were selected to recalibrate and then were validated again using the known data. The predicted co-efficient of determination was 0.5 or greater in 12 of the 17 horizon types studied. These new equations allowed gap filling where bulk density data were missing in part or whole soil profiles. This then allowed the development of an indicative soil bulk density map for Ireland at 0–30 and 30–50 cm horizon depths. In general the horizons with the largest known data sets had the best predictions, using the recalibrated and validated pedotransfer functions.Environmental Protection Agenc

    Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface

    Get PDF
    peer-reviewedFunctional Land Management (FLM) is proposed as an integrator for sustainability policies and assesses the functional capacity of the soil and land to deliver primary productivity, water purification and regulation, carbon cycling and storage, habitat for biodiversity and recycling of nutrients. This paper presents the catchment challenge as a method to bridge the gap between science, stakeholders and policy for the effective management of soils to deliver these functions. Two challenges were completed by a wide range of stakeholders focused around a physical catchment model—(1) to design an optimised catchment based on soil function targets, (2) identify gaps to implementation of the proposed design. In challenge 1, a high level of consensus between different stakeholders emerged on soil and management measures to be implemented to achieve soil function targets. Key gaps including knowledge, a mix of market and voluntary incentives and mandatory measures were identified in challenge 2.This work was in part conducted under the Soil Quality Assessment Research (SQUARE) Project, Reference No: 13S468 funded by the Irish Government under the National Development Plan 2007–2013. This study was completed as part of the LANDMARK (LAND Management: Assessment, Research, Knowledge Base) project. LANDMARK has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 635201. This work has also received funding as part of the SoilCare project from the European Union’s Horizon 2020 Programme for research, technological development and demonstration under Grant Agreement No. 677407

    A Functional Land Management conceptual framework under soil drainage and land use scenarios

    Get PDF
    peer-reviewedAgricultural soils offer multiple soil functions, which contribute to a range of ecosystem services, and the demand for the primary production function is expected to increase with a growing world population. Other key functions on agricultural land have been identified as water purification, carbon sequestration, habitat biodiversity and nutrient cycling, which all need to be considered for sustainable intensification. All soils perform all functions simultaneously, but the variation in the capacity of soils to supply these functions is reviewed in terms of defined land use types (arable, bio-energy, broadleaf forest, coniferous forest, managed grassland, other grassland and Natura 2000) and extended to include the influence of soil drainage characteristics (well, moderately/imperfect, poor and peat). This latter consideration is particularly important in the European Atlantic pedo-climatic zone; the spatial scale of this review. This review develops a conceptual framework on the multi-functional capacity of soils, termed Functional Land Management, to facilitate the effective design and assessment of agri-environmental policies. A final functional soil matrix is presented as an approach to show the consequential changes to the capacity of the five soil functions associated with land use change on soils with contrasting drainage characteristics. Where policy prioritises the enhancement of particular functions, the matrix indicates the potential trade-offs for individual functions or the overall impact on the multi-functional capacity of soil. The conceptual framework is also applied by land use area in a case study, using the Republic of Ireland as an example, to show how the principle of multi-functional land use planning can be readily implemented

    The influence of aggregate size fraction and horizon position on microbial community composition

    Get PDF
    peer-reviewedThe influence of horizon position and aggregate size on bacterial and fungal community composition was determined. From nine sites, soils were collected from the top three horizon positions (H1, H2 and H3). Physical fractionation separated samples into large macroaggregate (LM, >2000 μm), macroaggregate (MAC, >250 μm), microaggregate (MIC, <250 μm), and silt and clay (SC, 53 μm) fractions. In all samples, the structure of the bacterial and fungal community composition was assessed via restriction fragment length polymorphism (T-RFLP), and for the four aggregate sizes from the top two horizons positions an in-depth analysis of the bacterial community was conducted using next generation sequencing (NGS). Bacterial and fungal communities both differed between aggregate-sizes. Changes in the composition of the bacterial and fungal communities also occurred among horizon positions, with a significant interaction between aggregate size and horizon position evident for the bacterial community. Using NGS, it was shown that aggregate-size had a significant effect on the bacterial community in both horizon positions at both the phyla and family taxonomic levels. MAC and MIC significantly differed in the % relative abundance of bacterial groups, potentially indicating differing predation pressures. These results indicate that both horizon position and aggregate size support distinct microbial communities. Understanding these parameters is critical in our comprehension of the patterns of microbial diversity in soil

    Application of Dexter’s soil physical quality index: an Irish case study

    Get PDF
    peer-reviewedHistorically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.Funding was provided as part of Department of Agriculture, Food and the Marine (DAFM) Soil Quality Assessment and Research (SQUARE) Research Stimulus Fund No. 6582.Task 1 output

    Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture

    Get PDF
    peer-reviewedSustainable food production has re-emerged at the top of the global policy agenda, driven by two challenges: (1) the challenge to produce enough food to feed a growing world population and (2) the challenge to make more efficient and prudent use of the world's natural resources. These challenges have led to a societal expectation that the agricultural sector increase productivity, and at the same time provide environmental ‘ecosystem services’ such as the provision of clean water, air, habitats for biodiversity, recycling of nutrients and mitigation against climate change. Whilst the degree to which agriculture can provide individual ecosystem services has been well researched, it is unclear how and to what extent agriculture can meet all expectations relating to environmental sustainability simultaneously, whilst increasing the quantity of food outputs. In this paper, we present a conceptual framework for the quantification of the ‘supply of’ and ‘demand for’ agricultural, soil-based ecosystem services or ‘soil functions’. We use Irish agriculture as a case-study for this framework, using proxy-indicators to determine the demand for individual soil functions, as set by agri-environmental policies, as well as the supply of soil functions, as defined by land use and soil type. We subsequently discuss how this functionality of soils can be managed or incentivised through policy measures, with a view to minimising the divergence between agronomic policies designed to promote increased agricultural production and environmental policy objectives. Finally, we discuss the applicability of this conceptual framework to agriculture and agri-environmental policies at EU level, and the implications for policy makers

    An Assessment of Climate Induced Increase in Soil Water Availability for Soil Bacterial Communities Exposed to Long-Term Differential Phosphorus Fertilization

    Get PDF
    The fate of future food productivity depends primarily upon the health of soil used for cultivation. For Atlantic Europe, increased precipitation is predicted during both winter and summer months. Interactions between climate change and the fertilization of land used for agriculture are therefore vital to understand. This is particularly relevant for inorganic phosphorus (P) fertilization, which already suffers from resource and sustainability issues. The soil microbiota are a key indicator of soil health and their functioning is critical to plant productivity, playing an important role in nutrient acquisition, particularly when plant available nutrients are limited. A multifactorial, mesocosm study was established to assess the effects of increased soil water availability and inorganic P fertilization, on spring wheat biomass, soil enzymatic activity (dehydrogenase and acid phosphomonoesterase) and soil bacterial community assemblages. Our results highlight the significance of the spring wheat rhizosphere in shaping soil bacterial community assemblages and specific taxa under a moderate soil water content (60%), which was diminished under a higher level of soil water availability (80%). In addition, an interaction between soil water availability and plant presence overrode a long-term bacterial sensitivity to inorganic P fertilization. Together this may have implications for developing sustainable P mobilization through the use of the soil microbiota in future. Spring wheat biomass grown under the higher soil water regime (80%) was reduced compared to the constant water regime (60%) and a reduction in yield could be exacerbated in the future when grown in cultivated soil that have been fertilized with inorganic P. The potential feedback mechanisms for this need now need exploration to understand how future management of crop productivity may be impacted.</p

    A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation

    Get PDF
    peer-reviewedDuring laboratory assessment of the soil water characteristic curve (SWCC), determining equilibrium at various pressures is challenging. This study establishes a methodological framework to identify appropriate experimental duration at each pressure step for the construction of SWCCs via centrifugation. Three common temporal approaches to equilibrium – 24-, 48- and 72-h – are examined, for a grassland and arable soil. The framework highlights the differences in equilibrium duration between the two soils. For both soils, the 24-h treatment significantly overestimated saturation. For the arable site, no significant difference was observed between the 48- and 72-h treatments. Hence, a 48-h treatment was sufficient to determine ‘effective equilibrium’. For the grassland site, the 48- and 72-h treatments differed significantly. This highlights that a more prolonged duration is necessary for some soils to conclusively determine that effective equilibrium has been reached. This framework can be applied to other soils to determine the optimum centrifuge durations for SWCC construction.Teagasc Walsh Fellowship Programm
    corecore