5,654 research outputs found

    Estimating the functional form for the density dependence from life history data

    Get PDF
    Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments

    WHO guidelines on fluid resuscitation in children: missing the FEAST data.

    Get PDF
    The World Health Organization recommendations on management of common childhood illnesses affect the lives of millions of children admitted to hospital worldwide. Its latest guidelines,1 released in May 2013, continue to recommend rapid fluid resuscitation for septic shock, even though the only large controlled trial of this treatment (Fluid Expansion as a Supportive Treatment (FEAST) found that it increased the risk of death in African children.2 A subsequent systematic review of bolus resuscitation in children with shock resulting from severe infection also did not support its use.3 Failure to take this evidence into account is not consistent with WHO’s commitment to systematically and transparently assess evidence using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) process when producing guidelines and could endanger the lives of children

    Equivariant volumes of non-compact quotients and instanton counting

    Full text link
    Motivated by Nekrasov's instanton counting, we discuss a method for calculating equivariant volumes of non-compact quotients in symplectic and hyper-K\"ahler geometry by means of the Jeffrey-Kirwan residue-formula of non-abelian localization. In order to overcome the non-compactness, we use varying symplectic cuts to reduce the problem to a compact setting, and study what happens in the limit that recovers the original problem. We implement this method for the ADHM construction of the moduli spaces of framed Yang-Mills instantons on R4\R^{4} and rederive the formulas for the equivariant volumes obtained earlier by Nekrasov-Shadchin, expressing these volumes as iterated residues of a single rational function.Comment: 34 pages, 2 figures; minor typos corrected, to appear in Comm. Math. Phy

    Degenerate flag varieties: moment graphs and Schr\"oder numbers

    Get PDF
    We study geometric and combinatorial properties of the degenerate flag varieties of type A. These varieties are acted upon by the automorphism group of a certain representation of a type A quiver, containing a maximal torus T. Using the group action, we describe the moment graphs, encoding the zero- and one-dimensional T-orbits. We also study the smooth and singular loci of the degenerate flag varieties. We show that the Euler characteristic of the smooth locus is equal to the large Schr\"oder number and the Poincar\'e polynomial is given by a natural statistics counting the number of diagonal steps in a Schr\"oder path. As an application we obtain a new combinatorial description of the large and small Schr\"oder numbers and their q-analogues.Comment: 25 page

    Further characterization of ADAMTS-13 inactivation by thrombin

    Get PDF
    Background: The multimeric size and platelet-tethering function of von Willebrand factor (VWF) are modulated by the plasma metalloprotease, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS-13). In vitro ADAMTS-13 is susceptible to proteolytic inactivation by thrombin. Objectives: In this study, we aimed to characterize the inactivation of ADAMTS-13 by thrombin and to assess its physiological significance. Methods and results: By N-terminal sequencing of cleavage products, and by mutagenesis, we identified the principal thrombin cleavage sites in ADAMTS-13 as R257 and R1176. Using a library of 76 thrombin mutants, we highlighted the functional importance of exosite I on thrombin in the proteolysis of ADAMTS-13. Proteolysis of ADAMTS-13 by thrombin caused an 8-fold reduction in its affinity for VWF that contributed to its loss of VWF-cleaving function. Intriguingly, thrombin-cleaved ADAMTS-13 both bound and proteolyzed a short recombinant VWF A2 domain substrate (VWF115) normally. Following activation of coagulation in normal plasma, endogenous ADAMTS-13, but not added ADAMTS-13, appeared resistant to coagulation-induced fragmentation. An estimation of the Km for ADAMTS-13 proteolysis by thrombin was appreciably higher than the physiological concentration of ADAMTS-13. This was corroborated by the comparatively low affinity of ADAMTS-13 for thrombin (KD 95 nm). Conclusions: Together, our data suggest that ADAMTS-13 is protected from rapid proteolytic inactivation by thrombin in normal plasma. Whether this remains the case under pathological situations involving elevated/sustained generation of thrombin remains unclear
    corecore